

Figure 3
Figure 3 shows a plot of part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=\frac{2}{x}-\mathrm{e}^{x}+2 x^{2} \quad x \in \mathbb{R}, x \neq 0
$$

The curve cuts the x-axis at the point A, where $x=\alpha$, and at the point B, where $x=\beta$, as shown in Figure 3.
(a) Show that α lies between -1.5 and -1
(b) The iterative formula

$$
x_{n+1}=-\sqrt{\left(\frac{1}{2} \mathrm{e}^{x_{n}}-\frac{1}{x_{n}}\right)} \quad n \in \mathbb{N}
$$

with $x_{1}=-1$ can be used to estimate the value of α.
(i) Find the value of x_{3} to 4 decimal places.
(ii) Find the value of α correct to 2 decimal places.

The value of β lies in the interval $[1.5,3]$
A student takes 3 as her first approximation to β.
Given $f(3)=-1.4189$ and $f^{\prime}(3)=-8.3078$ to 4 decimal places,
(c) apply the Newton-Raphson method once to $\mathrm{f}(x)$ to obtain a second approximation to β. Give your answer to 2 decimal places.

A different student takes a starting value of 1.5 as his first approximation to β.
(d) Use Figure 3 to explain whether or not the Newton-Raphson method with this starting value gives a good second approximation to β.
[If you need to rework your answer to part (d) turn over for a spare copy of Figure 3]

Only use this spare copy of Figure 3 if you have to rework your answer to part (d).

Spare copy of Figure 3

