Question	Scheme	Marks	AOs
4	$C_{1}: x=10 \cos t, y=4 \sqrt{2} \sin t, 0 \leq t<2 \pi ; \quad C_{2}: x^{2}+y^{2}=66$		
Way 1	$(10 \cos t)^{2}+(4 \sqrt{2} \sin t)^{2}=66$	M1	3.1a
	$100\left(1-\sin ^{2} t\right)+32 \sin ^{2} t=66$	M1	2.1
		A1	1.1 b
	$\begin{array}{c\|c} \hline 100-68 \sin ^{2} t=66 \Rightarrow \sin ^{2} t=\frac{1}{2} & 68 \cos ^{2} t+32=66 \Rightarrow \cos ^{2} t=\frac{1}{2} \\ \Rightarrow \sin t=\ldots & \Rightarrow \cos t=\ldots \end{array}$	dM1	1.1b
	Substitutes their solution back into the relevant original equation(s) to get the value of the x-coordinate and value of the corresponding y-coordinate. Note: These may not be in the correct quadrant	M1	1.1b
	$S=(5 \sqrt{2},-4)$ or $x=5 \sqrt{2}, y=-4$ or $S=($ awrt $7.07,-4)$	A1	3.2 a
		(6)	
Way 2	$\left\{\cos ^{2} t+\sin ^{2} t=1 \Rightarrow\right\}\left(\frac{x}{10}\right)^{2}+\left(\frac{y}{4 \sqrt{2}}\right)^{2}=1\left\{\Rightarrow 32 x^{2}+100 y^{2}=3200\right\}$	M1	3.1a
	$\frac{x^{2}}{10}+\frac{66-x^{2}}{32}=1 \quad \frac{66-y^{2}}{100}+\frac{y^{2}}{32}=1$	M1	2.1
	$\overline{100}+\frac{32}{32}=100{ }^{\text {a }}+\frac{y^{32}}{32}=1$	A1	1.1 b
	$32 x^{2}+6600-100 x^{2}=3200$ $2112-32 y^{2}+100 y^{2}=3200$ $x^{2}=50 \Rightarrow x=\ldots$ $y^{2}=16 \Rightarrow y=\ldots$	dM1	1.1b
	Substitutes their solution back into the relevant original equation(s) to get the value of the corresponding x-coordinate or y-coordinate. Note: These may not be in the correct quadrant	M1	1.1b
	$S=(5 \sqrt{2},-4)$ or $x=5 \sqrt{2}, y=-4$ or $S=($ awrt $7.07,-4)$	A1	3.2a
		(6)	
Way 3	$\begin{gathered} \left\{C_{2}: x^{2}+y^{2}=66 \Rightarrow\right\} \quad x=\sqrt{66} \cos \alpha, y=\sqrt{66} \sin \alpha \\ \left\{C_{1}=C_{2} \Rightarrow\right\} \quad 10 \cos t=\sqrt{66} \cos \alpha, \quad 4 \sqrt{2} \sin t=\sqrt{66} \sin \alpha \\ \left\{\cos ^{2} \alpha+\sin ^{2} \alpha=1 \Rightarrow\right\}\left(\frac{10 \cos t}{\sqrt{66}}\right)^{2}+\left(\frac{4 \sqrt{2} \sin t}{\sqrt{66}}\right)^{2}=1 \end{gathered}$	M1	3.1a
	then continue with applying the mark scheme for Way 1		
Way 4	$(10 \cos t)^{2}+(4 \sqrt{2} \sin t)^{2}=66$	M1	3.1a
	$100\left(\frac{1+\cos 2 t}{2}\right)+32\left(\frac{1-\cos 2 t}{2}\right)=66$	M1	2.1
	$100\left(\frac{1}{2}\right)+32\left(\frac{\cos 2 t}{2}\right)=66$	A1	1.1 b
	$\begin{gathered} 50+50 \cos 2 t+16-16 \cos 2 t=66 \Rightarrow 34 \cos 2 t+66=66 \\ \Rightarrow \cos 2 t=\ldots \end{gathered}$	dM1	1.1b
	Substitutes their solution back into the original equation(s) to get the value of the x-coordinate and value of the y-coordinate. Note: These may not be in the correct quadrant	M1	1.1b
	$S=(5 \sqrt{2},-4)$ or $x=5 \sqrt{2}, y=-4$ or $S=($ awrt $7.07,-4)$	A1	3.2a
		(6)	
	Note: Give final A0 for writing $x=5 \sqrt{2}, y=-4$ followed by $S=(-4,5 \sqrt{2})$		
(6 marks)			
Notes for Question 4			

	Way 1
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 1: A complete process of combining equations for C_{1} and C_{2} by substituting the parametric equation into the Cartesian equation to give an equation in one variable (i.e. t) only.
M1:	Uses the identity $\sin ^{2} t+\cos ^{2} t \equiv 1$ to achieve an equation in $\sin ^{2} t$ only or $\cos ^{2} t$ only
A1:	A correct equation in $\sin ^{2} t$ only or $\cos ^{2} t$ only
dM1: Note:	dependent on both the previous M marks Rearranges to make $\sin t=\ldots$ where $-1 \leq \sin t \leq 1$ or $\cos t=\ldots$ where $-1 \leq \cos t \leq 1$ Condone $3{ }^{\text {rd }} \mathrm{M} 1$ for $\sin ^{2} t=\frac{1}{2} \Rightarrow \sin t=\frac{1}{4}$
M1:	See scheme
A1:	Selects the correct coordinates for S Allow either $S=(5 \sqrt{2},-4)$ or $S=($ awrt $7.07,-4)$
	Way 2
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 2: A complete process of using $\cos ^{2} t+\sin ^{2} t \equiv 1$ to convert the parametric equation for C_{1} into a Cartesian equation for C_{1}
M1:	Complete valid attempt to write an equation in terms of x only or y only not involving trigonometry
A1:	A correct equation in x only or y only not involving trigonometry
dM1: Note:	dependent on both the previous M marks Rearranges to make $x=\ldots$ or $y=\ldots$ their x^{2} or their y^{2} must be >0 for this mark
M1: Note:	See scheme their x^{2} and their y^{2} must be >0 for this mark
A1:	Selects the correct coordinates for S Allow either $S=(5 \sqrt{2},-4)$ or $S=($ awrt $7.07,-4)$ or $S=(\sqrt{50},-4)$ or $S=\left(\frac{10}{\sqrt{2}},-4\right)$
	Way 3
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 3: A complete process of writing C_{2} in parametric form, combining the parametric equations of C_{1} and C_{2} and applying $\cos ^{2} \alpha+\sin ^{2} \alpha \equiv 1$ to give an equation in one variable (i.e. t) only.
	then continue with applying the mark scheme for Way 1
	Way 4
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 4: A complete process of combining equations for C_{1} and C_{2} by substituting the parametric equation into the Cartesian equation to give an equation in one variable (i.e. t) only.
M1: Note:	Uses the identities $\cos 2 t \equiv 2 \cos ^{2} t-1$ and $\cos 2 t \equiv 1-2 \sin ^{2} t$ to achieve an equation in $\cos 2 t$ only At least one of $\cos 2 t \equiv 2 \cos ^{2} t-1$ or $\cos 2 t \equiv 1-2 \sin ^{2} t$ must be correct for this mark.
A1:	A correct equation in $\cos 2 t$ only
dM1:	dependent on both the previous M marks Rearranges to make $\cos 2 t=\ldots$ where $-1 \leq \cos 2 t \leq 1$
M1:	See scheme
A1:	Selects the correct coordinates for S Allow either $S=(5 \sqrt{2},-4)$ or $S=($ awrt $7.07,-4)$ or $S=(\sqrt{50},-4)$ or $S=\left(\frac{10}{\sqrt{2}},-4\right)$

