Question		Scheme	Marks	AOs
6 (9)		$gg(0) - g((0-2)^2+1) = g(5) - 4(5) - 7 - 13$	M1	2.1
0 (u)			A1	1.1b
			(2)	
(b)		Solves either $(x-2)^2 + 1 = 28 \implies x = \dots$ or $4x - 7 = 28 \implies x = \dots$	M1	1.1b
		At least one critical value $x = 2 - 3\sqrt{3}$ or $x = \frac{35}{4}$ is correct	A1	1.1b
		Solves both $(x-2)^2 + 1 = 28 \implies x = \dots$ and $4x - 7 = 28 \implies x = \dots$	M1	1.1b
		Correct final answer of ' $x < 2 - 3\sqrt{3}$, $x > \frac{35}{4}$ '	A1	2.1
		Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2	(4)	
		in place of $2-3\sqrt{3}$ is accepted for any of the A marks		
(c)		<u>h is a one-one</u> {function (or mapping) so has an inverse} <u>g is a many-one</u> {function (or mapping) so does not have an inverse}	B1	2.4
			(1)	
(d) Way 1	1	$\left\{\mathbf{h}^{-1}(x) = -\frac{1}{2} \Longrightarrow\right\} x = \mathbf{h}\left(-\frac{1}{2}\right)$	M1 B1 on epen	1.1b
		$x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$	M1	1.1b
		$\Rightarrow x = 7.25$ only cso	A1	2.2a
			(3)	
(d)		{their $h^{-1}(x)$ } = $\pm 2 \pm \sqrt{x \pm 1}$	M1	1.1b
Way 2	2	Attempts to solve $\pm 2 \pm \sqrt{x \pm 1} = -\frac{1}{2} \implies \pm \sqrt{x \pm 1} =$	M1	1.1b
		$\Rightarrow x = 7.25$ only cso	A1	2.2a
			(3)	
			(1	0 marks)
(0)		Notes for Question 6		
(a) M1·	Use	es a complete method to find $gg(0)$. E.g.		
	• Substituting $r = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant part of $g(r)$			
		• Attempts to substitute $r = 0$ into $4((r-2)^2 + 1) = 7$ or $4(r-2)^2 = 3$	and pure or a	5(11)
۸1.	σσί	$\frac{1}{10} = 13$		
A1. (b)	551	0) 15		
M1:	See scheme			
A1:	See scheme			
M1:	See scheme			
A1:	Brings all the strands of the problem together to give a correct solution.			
Note:	Υοι	You can ignore inequality symbols for any of the M marks		
Note:	If a the	If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.		
Note:	Wr	iting $(x-2)^2 + 1 = 28 \implies (x-2) + 1 = \sqrt{28} \implies x = -1 + \sqrt{28}$ (i.e. taking the	e square-roo	ot of
	eac	h term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable meth	od)	
Note:	Alle	ow set notation. E.g. { $x \in \mathbb{R}$: $x < 2 - 3\sqrt{3} \cup x > 8.75$ } is fine for the final	l A mark	

Notes for Question 6 Continued			
(b)	continued		
Note:	Give final A0 for $\{x \in \mathbb{R} : x < 2 - 3\sqrt{3} \cap x > 8.75\}$		
Note:	Give final A0 for $2-3\sqrt{3} > x > 8.75$		
Note:	Allow final A1 for their writing a final answer of " $x < 2 - 3\sqrt{3}$ and $x > \frac{35}{4}$ "		
Note:	Allow final A1 for a final answer of $x < 2 - 3\sqrt{3}$, $x > \frac{35}{4}$		
Note:	Writing $2 - \sqrt{27}$ in place of $2 - 3\sqrt{3}$ is accepted for any of the A marks		
Note:	Allow final A1 for a final answer of $x < -3.20$, $x > 8.75$		
Note:	Using 29 instead of 28 is M0 A0 M0 A0		
(c)			
B1:	A correct explanation that conveys the <u>underlined points</u>		
Note:	A minimal acceptable reason is "h is a one-one and g is a many-one"		
Note:	Give B1 for " h^{-1} is one-one and g^{-1} is one-many"		
Note:	Give B1 for "h is a one-one and g is not"		
Note:	Allow B1 for "g is a many-one and h is not"		
(d)	Way 1		
M1:	Writes $x = h\left(-\frac{1}{2}\right)$		
M1:	See scheme		
A1:	Uses $x = h\left(-\frac{1}{2}\right)$ to deduce that $x = 7.25$ only, cso		
(d)	Way 2		
M1:	See scheme		
M1:	See scheme		
A1:	Use a correct $h^{-1}(x) = 2 - \sqrt{x-1}$ to deduce that $x = 7.25$ only, cso		
Note:	Give final A0 cso for $2 + \sqrt{x-1} = -\frac{1}{2} \Rightarrow \sqrt{x-1} = -\frac{5}{2} \Rightarrow x-1 = \frac{25}{4} \Rightarrow x = 7.25$		
Note:	Give final A0 cso for $2 \pm \sqrt{x-1} = -\frac{1}{2} \Rightarrow \sqrt{x-1} = -\frac{5}{2} \Rightarrow x-1 = \frac{25}{4} \Rightarrow x = 7.25$		
Note:	Give final A1 cso for $2 \pm \sqrt{x-1} = -\frac{1}{2} \Rightarrow -\sqrt{x-1} = -\frac{5}{2} \Rightarrow x-1 = \frac{25}{4} \Rightarrow x = 7.25$		
Note:	Allow final A1 for $2 \pm \sqrt{x-1} = -\frac{1}{2} \implies \pm \sqrt{x-1} = -\frac{5}{2} \implies x-1 = \frac{25}{4} \implies x = 7.25$		