Question	Scheme	Marks	AOs
7	$\pounds y$ is the total cost of making x bars of soap Bars of soap are sold for $\pounds 2$ each		
(a)	$y = kx + c$ {where k and c are constants}	B1	3.3
	Note: Work for (a) cannot be recovered in (b) or (c)	(1)	
(b)	Either		
Way 1	• $x = 800 \Rightarrow y = 2(800) - 500 \{=1100 \Rightarrow (x, y) = (800, 1100)\}$	M1	3.1b
	• $x = 300 \Rightarrow y = 2(300) + 80 \{= 680 \Rightarrow (x, y) = (300, 680)\}$		
	Applies (800, their 1100) and (300, their 680) to give two equations	1) (1	1 11
	$1100 = 800k + c$ and $680 = 300k + c \implies k, c =$	dM1	1.1b
	Solves correctly to find $k = 0.84$, $c = 428$ and states	A 1 ¥	0.1
	y = 0.84x + 428 *	A1*	2.1
	Note: the answer $y = 0.84x + 428$ must be stated in (b)	(3)	
(b)	Either		
Way 2	• $x = 800 \Rightarrow y = 2(800) - 500 \{=1100 \Rightarrow (x, y) = (800, 1100)\}$	M1	3.1b
	• $x = 300 \Rightarrow y = 2(300) + 80 \{= 680 \Rightarrow (x, y) = (300, 680)\}$		
	Complete method for finding both $k =$ and $c =$		
	e.g. $k = \frac{1100 - 680}{800 - 300} \{= 0.84\}$	dM1	1.1b
		GIVII	1.10
	$(800, 1100) \Longrightarrow 1100 = 800(0.84) + c \Longrightarrow c = \dots$		
	Solves to find $k = 0.84$, $c = 428$ and states $y = 0.84x + 428$ *	A1*	2.1
	Note: the answer $y = 0.84x + 428$ must be stated in (b)	(3)	
(b)	Either		
Way 3	• $x = 800 \Rightarrow y = 2(800) - 500 \{=1100 \Rightarrow (x, y) = (800, 1100)\}$	M1	3.1b
	• $x = 300 \Rightarrow y = 2(300) + 80 \{= 680 \Rightarrow (x, y) = (300, 680)\}$		
	$\{y = 0.84x + 428 \implies\} x = 800 \implies y = (0.84)(800) + 428 = 1100$	dM1	1.1b
	$x = 300 \implies y = (0.84)(300) + 428 = 680$		1.10
	Hence $y = 0.84x + 428$ *	A1*	2.1
		(3)	
(c)	Allow any of {0.84, in £s} represents		
	• the <i>cost</i> of {making} each extra bar {of soap}		
	 the direct <i>cost</i> of {making} a bar {of soap} the marginal <i>cost</i> of {making} a bar {of soap} 		
	 the cost of {making} a bar {of soap} (Condone this answer) 	B1	3.4
	Note: Do not allow		
	• {0.84, in £s} is the profit per bar {of soap}		
	• {0.84, in £s} is the (selling) price per bar {of soap}		
	{Let <i>n</i> be the least number of bars required to make a profit}	(1)	
(d) Way 1	{Let <i>n</i> be the least number of bars required to make a profit} $2n = 0.84n + 428 \implies n =$		
vvay 1	$(Condone \ 2x = 0.84x + 428 \implies x =)$	M1	3.4
	$\frac{1}{2x - 0.64x + 428} \implies x - \dots)$ Answer of 369 {bars}	A1	3.2a
		(2)	J.2a
(d)	• Trial 1: $n = 368 \implies y = (0.84)(368) + 428 \implies y = 737.12$		
Way 2	{revenue = $2(368) = 736$ or loss = 1.12}	M1	3.4
	• Trial 2: $n = 369 \implies y = (0.84)(369) + 428 \implies y = 737.96$		
	{revenue = $2(369) = 738$ or profit = 0.04}	A 1	2.0
	leading to an answer of 369 {bars}	A1	3.2a
		(2)	
		('	7 marks)

	Notes for Question 7		
(a)			
B1:	Obtains a correct form of the equation. E.g. $y = kx + c$; $k \neq 0, c \neq 0$. Note: Must be seen in (a)		
Note:	Ignore how the constants are labelled – as long as they appear to be constants. e.g. k, c, m etc.		
(b)	Way 1		
M1:	Translates the problem into the model by finding either		
	• $y = 2(800) - 500$ for $x = 800$		
	• $y = 2(300) + 80$ for $x = 300$		
dM1:	dependent on the previous M mark		
	See scheme		
A1:	See scheme – no errors in their working		
Note	Allow 1 st M1 for any of		
	• $1600 - y = 500$		
	• $600 - y = -80$		
(b)	Way 2		
M1:	Translates the problem into the model by finding either		
	y = 2(800) - 500 for $x = 800$		
	y = 2(300) + 80 for $x = 300$		
dM1:	dependent on the previous M mark		
	See scheme		
A1:	See scheme – no error in their working		
(b)	Way 3		
M1:	Translates the problem into the model by finding either		
	y = 2(800) - 500 for $x = 800$		
	y = 2(300) + 80 for $x = 300$		
dM1:	dependent on the previous M mark		
	Uses the model to test both points (800, their 1100) and (300, their 680)		
A1:	Confirms $y = 0.84x + 428$ is true for both (800, 1100) and (300, 680) and gives a conclusion		
Note:	Conclusion could be " $y = 0.84x + 428$ " or "QED" or "proved"		
Neder	Give 1 st M0 for $500 = 800k + c$, $80 = 300k + c \implies k = \frac{500 - 80}{800 - 300} = 0.84$		
Note:	Give 1 Mo for $500 = 800k + c$, $80 = 500k + c \implies k = \frac{1}{800 - 300} = 0.84$		
(c)			
B1:	see scheme		
Note:	Also condone B1 for "rate of change of cost", "cost of {making} a bar",		
L	"constant of proportionality for cost per bar of soap" or "rate of increase in cost",		
Note:	Do not allow reasons such as "price increase or decrease", "rate of change of the bar of soap"		
	or "decrease in cost"		
Note:	Give B0 for incorrect use of units.		
	E.g. Give B0 for "the cost of making each extra bar of soap is £84" Condone the use of £0.84p		
	Condone the use of 20.04p		

Notes for Question 7 Continued		
(d)	Way 1	
M1:	Using the model and constructing an argument leading to a critical value for the number of bars of soap sold. See scheme.	
A1:	369 only. Do not accept decimal answers.	
(d)	Way 2	
M1:	Uses either 368 or 369 to find the cost $y =$	
A1:	Attempts both trial 1 and trial 2 to find both the cost $y =$ and arrives at an answer of 369	
	only. Do not accept decimal answers.	
Note:	You can ignore inequality symbols for the method mark in part (d)	
Note:	Give M1 A1 for no working leading to 369 {bars}	
Note:	Give final A0 for $x > 369$ or $x > 368$ or $x \ge 369$ without $x = 369$ or 369 stated as their	
	final answer	
Note:	Condone final A1 for in words "at least 369 bars must be made/sold"	
Note:	Special Case:	
	Assuming a profit of £1 is required and achieving $x = 370$ scores special case M1A0	