Question	Scheme	Marks	AOs
10			
	$\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b}$		
(a)	$\left\{ \overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = \overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB} \Rightarrow \right\} \overrightarrow{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ $\left\{ \overrightarrow{CM} = \overrightarrow{CB} + \overrightarrow{BM} = \overrightarrow{CB} + \frac{1}{2}\overrightarrow{BA} \Rightarrow \right\} \overrightarrow{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$	M1	3.1a
	$\Rightarrow \overrightarrow{CM} = -\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} (needs \ to \ be \ simplified \ and \ seen \ in \ (a) \ only)$	A1	1.1b
		(2)	
(b)	$ON = OC + CN \Longrightarrow ON = OC + \lambda CM$	M1	1.1b
	$\overrightarrow{ON} = 2\mathbf{a} + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda \right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} *$	A1*	2.1
		(2)	
(c) Way 1	$\left(2 - \frac{3}{2}\lambda\right) = 0 \implies \lambda = \dots$	M1	2.2a
	$\lambda = \frac{4}{3} \Longrightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Longrightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Longrightarrow ON : NB = 2:1 *$	A1*	2.1
		(2)	
(c) Way 2	$\overrightarrow{ON} = \mu \mathbf{b} \implies \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} = \mu\mathbf{b}$		
	$\mathbf{a}: \left(2-\frac{3}{2}\lambda\right) = 0 \implies \lambda = \dots \left\{ \mathbf{b}: \frac{1}{2}\lambda = \mu \& \lambda = \frac{4}{3} \implies \mu = \frac{2}{3} \right\}$	M1	2.2a
	$\lambda = \frac{4}{3} \text{ or } \mu = \frac{2}{3} \Rightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow ON : NB = 2:1 *$	A1*	2.1
		(2)	
		(6 marks)

Questi	ion Scheme	Marks	AOs		
10 (c) Way	$\overrightarrow{OB} = \overrightarrow{ON} + \overrightarrow{NB} \Rightarrow \mathbf{b} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} + K\mathbf{b}$				
	a : $\left(2-\frac{3}{2}\lambda\right)=0 \Rightarrow \lambda = \dots \left\{$ b : $1=\frac{1}{2}\lambda+K \& \lambda=\frac{4}{3} \Rightarrow K=\frac{1}{3} \right\}$	M1	2.2a		
	$\lambda = \frac{4}{3} \text{ or } K = \frac{1}{3} \Longrightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \text{ or } \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \Longrightarrow ON : NB = 2:1 *$	A1	2.1		
		(2)			
10 (c) Way	4 $\overrightarrow{ON} = \mu \mathbf{b} \& \overrightarrow{CN} = k \overrightarrow{CM} \Rightarrow \overrightarrow{CO} + \overrightarrow{ON} = k \overrightarrow{CM}$				
	$-2\mathbf{a} + \mu \mathbf{b} = k \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right)$				
	$\mathbf{a}:-2=-\frac{3}{2}k \Rightarrow k=\frac{4}{3}, \mathbf{b}: \ \mu=\frac{1}{2}k \Rightarrow \mu=\frac{1}{2}\left(\frac{4}{3}\right)=\dots$	M1	2.2a		
	$\mu = \frac{2}{3} \implies \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \implies \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \implies ON : NB = 2:1 *$	A1	2.1		
		(2)			
	Notes for Question 10				
(a)					
M1:	Valid attempt to find \overrightarrow{CM} using a combination of known vectors a and b				
A1:	A simplified correct answer for \overline{CM}				
Note:	Give M1 for $\overrightarrow{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overrightarrow{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$				
	or for $\left\{ \overrightarrow{CM} = \overrightarrow{OM} - \overrightarrow{OC} \Rightarrow \right\} \overrightarrow{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.				
(b)					
M1:	Uses $\overrightarrow{ON} = \overrightarrow{OC} + \lambda \overrightarrow{CM}$				
A1*:	Correct proof				
Note:	Special Case				
	Give SC M1 A0 for the solution $ON = OA + AM + MN \Rightarrow ON = OA + AM + M$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b} \right\}$	λĊΜ			
Note:	$\frac{\text{Alternative 1:}}{\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}}$				
	$\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$	\ 1			
	$\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right) \mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$				
(c)	Way 1, Way 2 and Way 3				
M1:	Deduces that $\left(2-\frac{3}{2}\lambda\right)=0$ and attempts to find the value of λ				
A1*:	Correct proof				
(c)	Way 4				
M1:	Complete attempt to find the value of μ				
A1*:	Correct proof				

