Question	Scheme		Marks	AOs
11 (a)	$\{y = x^x \Longrightarrow\} \ln y = x \ln x$	$\{y = x^x \Longrightarrow\}$ ln $y = x \ln x$		1.1a
Way 1	1 dy 1 . 1	1 dy		1.1b
	$\frac{-1}{y}\frac{-1}{dx} = 1 + \ln x$	$\frac{-1}{y}\frac{1}{dx} = 1 + \ln x$		2.1
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow\right\} \frac{x}{x} + \ln x = 0 \text{or} 1 + \ln x = 0 \implies \ln x = k$	$x \Rightarrow x = \dots$	M1	1.1b
	$x = e^{-1} \text{or awrt } 0.368$		A1	1.1b
	Note: $k \neq 0$		(5)	
(a)	$\{y = x^x \Longrightarrow\} y = e^{x \ln x}$		B1	1.1a
Way 2	dy (x) , dy		M1	1.1b
	$\frac{dy}{dx} = \left(\frac{x}{x} + \ln x\right) e^{x \ln x}$		A1	2.1
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow\right\} \frac{x}{x} + \ln x = 0 \text{or} 1 + \ln x = 0 \implies \ln x = 0$	$k \Longrightarrow x = \dots$	M1	1.1b
	$x = e^{-1} \text{or awrt } 0.368$		A1	1.1b
	Note: $k \neq 0$		(5)	
(b) Way 1	Attempts both $1.5^{1.5} = 1.8$ and $1.6^{1.6} = 2.1$ and at correct to awrt 1 dp	least one result is	M1	1.1b
	1.8 < 2 and 2.1 > 2 and as C is continuous then	$1.5 < \alpha < 1.6$	A1	2.1
			(2)	
(c)	Attempts $x_{n+1} = 2x_n^{1-x_n}$ at least once with $x_1 = 1.5$ Can be implied by $2(1.5)^{1-1.5}$ or awrt 1.63		M1	1.1b
	$\{x_4 = 1.67313 \Rightarrow\} x_4 = 1.673 (3 \text{ dp})$ cao		A1	1.1b
			(2)	
(d)	Give 1st B1 for any ofGive B1 B1 for any of• oscillates• periodic {sequerents• periodic• oscillates betweents	of ace} with period 2 en 1 and 2	B1	2.5
	 non-convergent divergent fluctuates goes up and down 1, 2, 1, 2, 1, 2 alternates (condone) Condone B1 B1 for a fluctuates betwee keep getting 1, 2 alternates betwee goes up and down 1, 2, 1, 2, 1, 2 	any of en 1 and 2 en 1 and 2 rn between 1 and 2	B1	2.5
			(2)	
			(1)	1 marks)
NoteA common solution A maximum of 3 marks (i.e. B1 1st M1 and 2nd M1) can be given for the solution $\log y = x \log x \Rightarrow \frac{1}{y} \frac{dy}{dx} = 1 + \log x$ $\left\{ \frac{dy}{dx} = 0 \Rightarrow \right\} 1 + \log x = 0 \Rightarrow x = 10^{-1}$				
• 1 st B1 for $\log y = x \log x$ • 1 st M1 for $\log y \rightarrow \lambda \frac{1}{y} \frac{dy}{dx}$; $\lambda \neq 0$ or $x \log x \rightarrow 1 + \log x$ or $\frac{x}{x} + \log x$ • 2 nd M1 can be given for $1 + \log x = 0 \Rightarrow \log x = k \Rightarrow x =; k \neq 0$				

Questi	ion Scheme	Marks	AOs		
11 (b) Way 2	For $x^x - 2$, attempts both $1.5^{1.5} - 2 = -0.16$ and $1.6^{1.6} - 2 = 0.12$ and at least one result is correct to awrt 1 dp	M1	1.1b		
	$-0.16 < 0$ and $0.12 > 0$ and as <i>C</i> is continuous then $1.5 < \alpha < 1.6$	Al	2.1		
11 (b)) Eagle α where effects hoth 151 α 15 α (00) and	(2)			
Way 3	3 For $\ln y = x \ln x$, attempts both 1.5 $\ln 1.5 = 0.008$ and 1.6 $\ln 1.6 = 0.752$ and at least one result is correct to awrt 1 dp	M1	M1 1.1b		
	0.608<0.69 and 0.752>0.69 and	A 1	2.1		
	as <i>C</i> is continuous then $1.5 < \alpha < 1.6$	AI	2.1		
		(2)			
11 (b)) For $\log y = x \log x$, attempts both 1.5 log1.5 = 0.264 and	M1	1 1b		
Way 4	4 $1.6\log_{1.6} = 0.326$ and at least one result is correct to awrt 2 dp	1011			
	0.264 < 0.301 and $0.326 > 0.301$ and	A1	2.1		
	as C is continuous then $1.5 < \alpha < 1.6$	(2)			
	Notes for Ouestion 11				
(a)	Way 1				
B1:	$\ln y = x \ln x. \text{ Condone } \log_x y = x \log_x x \text{ or } \log_x y = x$				
M1:	For either $\ln y \to \frac{1}{y} \frac{dy}{dx}$ or $x \ln x \to 1 + \ln x$ or $\frac{x}{x} + \ln x$				
A1:	Correct differentiated equation.				
	i.e. $\frac{1}{y}\frac{dy}{dx} = 1 + \ln x$ or $\frac{1}{y}\frac{dy}{dx} = \frac{x}{x} + \ln x$ or $\frac{dy}{dx} = y(1 + \ln x)$ or $\frac{dy}{dx} = x^x(1 + \ln x)$				
M1:	Sets $1 + \ln x = 0$ and rearranges to make $\ln x = k \implies x =; k$ is a constant a	Sets $1 + \ln x = 0$ and rearranges to make $\ln x = k \implies x =; k$ is a constant and $k \neq 0$			
A1:	$x = e^{-1}$ or awrt 0.368 only (with no other solutions for x)				
Note:	Give no marks for no working leading to 0.368				
Note:	Give M0 A0 M0 A0 for $\ln y = x \ln x \rightarrow x = 0.368$ with no intermediate working				
(a)	Way 2				
B1:	$y = e^{x \ln x}$				
M1:	For either $y = e^{x \ln x} \Rightarrow \frac{dy}{dx} = f(\ln x)e^{x \ln x}$ or $x \ln x \to 1 + \ln x$ or $\frac{x}{x} + \ln x$				
A1:	Correct differentiated equation.				
	i.e. $\frac{dy}{dx} = \left(\frac{x}{x} + \ln x\right) e^{x \ln x}$ or $\frac{dy}{dx} = (1 + \ln x) e^{x \ln x}$ or $\frac{dy}{dx} = x^x (1 + \ln x)$				
M1:	Sets $1 + \ln x = 0$ and rearranges to make $\ln x = k \implies x =; k$ is a constant and $k \neq 0$				
A1:	$x = e^{-1}$ or awrt 0.368 only (with no other solutions for x)				
Note:	Give B1 M1 A0 M1 A1 for the following solution:				
	$\{y = x^x \Rightarrow\}$ $\ln y = x \ln x \Rightarrow \frac{dy}{dx} = 1 + \ln x \Rightarrow 1 + \ln x = 0 \Rightarrow x = e^{-1}$ or awrt 0.368				

Notes for Question 11 Continued		
(b)	Way 1	
M1:	Attempts both $1.5^{1.5} = 1.8$ and $1.6^{1.6} = 2.1$ and at least one result is correct to awrt 1 dp	
A1:	Both $1.5^{1.5} = awrt 1.8 and 1.6^{1.6} = awrt 2.1, reason (e.g. 1.8 < 2 and 2.1 > 2$	
	or states C cuts through $y = 2$), C continuous and conclusion	
(b)	Way 2	
M1:	Attempts both $1.5^{1.5} - 2 = -0.16$ and $1.6^{1.6} - 2 = 0.12$ and at least one result is correct	
	to awrt 1 dp	
A1:	Both $1.5^{1.5} - 2 = -0.16$ and $1.6^{1.6} - 2 = 0.12$ correct to awrt 1 dp, reason (e.g. $-0.16 < 0$	
	and $0.12>0$, sign change or states C cuts through $y = 0$), C continuous and conclusion	
(b)	Way 3	
M1:	Attempts both $1.5 \ln 1.5 = 0.608$ and $1.6 \ln 1.6 = 0.752$ and at least one result is correct	
	to awrt 1 dp	
A1:	Both $1.5 \ln 1.5 = 0.608$ and $1.6 \ln 1.6 = 0.752$ correct to awrt 1 dp, reason	
	(e.g. $0.608 < 0.69$ and $0.752 > 0.69$ or states they are either side of $\ln 2$),	
A \	C continuous and conclusion.	
(b)	Way 4	
M1:	Attempts both $1.5 \log 1.5 = 0.264$ and $1.6 \log 1.6 = 0.326$ and at least one result is correct	
	to awrt 2 dp	
A1:	Both $1.5 \log 1.5 = 0.264$ and $1.6 \log 1.6 = 0.326$ correct to awrt 2 dp, reason	
	(e.g. $0.264 < 0.301$ and $0.326 > 0.301$ or states they are either side of $\log 2$),	
	<i>C</i> continuous and conclusion.	
(c)		
M1:	An attempt to use the given or their formula once. Can be implied by $2(1.5)^{1-1.5}$ or awrt 1.63	
A1:	States $x_4 = 1.673$ cao (to 3 dp)	
Note:	Give M1 A1 for stating $x_4 = 1.673$	
Note:	M1 can be implied by stating their final answer $x_4 = awrt 1.673$	
Note:	$x_2 = 1.63299, x_3 = 1.46626, x_4 = 1.67313$	
(d)		
B1:	see scheme	
B1:	see scheme	
Note:	Only marks of B1B0 or B1B1 are possible in (d)	
Note:	Give B0 B0 for "Converges in a cob-web pattern" or "Converges up and down to α "	