Question 8 (Total 6 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(i)	$\sum_{k=3}^{\infty} 6 \times \left(\frac{1}{2}\right)^k$	M1	This mark is given for a method to find the sum to infinity of a GP
	$= \sum_{k=1}^{\infty} 6 \times \left(\frac{1}{2}\right)^k - 6\left(\frac{1}{2} + \frac{1}{4}\right)$		
	$= \sum_{k=1}^{\infty} 6 \times \left(\frac{1}{2}\right)^k - \frac{9}{2}$		
	$=\frac{3}{1-\frac{1}{2}}-\frac{9}{2}$	M1	This mark is given for a method to use a correct sum formula with a correct first term
	$=\frac{3}{2}$	A1	This mark is given for a correct value for the sum
(ii)	$\sum_{n=0}^{125} \log_4 \left(\frac{k+3}{k+2} \right)$ = $\log_4 \frac{3}{2} + \log_4 \frac{4}{3} + \dots + \log_4 \frac{127}{126} + \log_4 \frac{127}{126}$	128 127	A1 This mark is given for writing out at least four terms of the sum, including the first two and the last two
	$= \log_4 \frac{3 \times 4 \times \dots \times 126 \times 127 \times 128}{2 \times 3 \times 4 \times \dots \times 126 \times 127}$	M1	This mark is given for using the rules of logs and cancelling terms
	$= \log_4 \frac{128}{2}$		
	= 3	A1	This mark is given for a full proof to show the expression is equal to 3 as required