Question 11 (Total 11 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$y = x^x \Longrightarrow \ln y = x \ln x$	M1	This mark is for a method to find the <i>x</i> -coordinate of the turning point of <i>C</i> by taking logarithms
	$\ln y = x \ln x \Longrightarrow \frac{1}{y} \frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + 1$	M1	This mark is given for a method using implicit differentiation
		A1	This mark is given for a correct expression for $\frac{1}{y} \frac{dy}{dx}$
	Setting $\frac{dy}{dx} = 0$, $\ln x + 1 = 0$	M1	This mark is given for a method for finding the turning point of C by setting $\frac{dy}{dx} = 0$
	$x = e^{-1}$	A1	This mark is given for correctly finding a value for the <i>x</i> -coordinate of the turning point of <i>C</i>
(b)	$1.5^{1.5} = 1.837, 1.6^{1.6} = 2.121$	M1	This mark is given for substituting 1.5 and 1.6 into $y = x^x$
	The curve <i>C</i> contains the points (1.5, 1.8) and (1.6, 2.1). At <i>P</i> , $y = 2$ Since <i>C</i> is continuous, $1.5 < \alpha < 1.6$	A1	This mark is given for a valid explanation that C contains the points (1.5, 1.8) and (1.6, 2.1) and is continuous
(c)	$x_1 = 1.5$ $x_2 = 2 \times 1.5^{-0.5} = 1.633$	M1	This mark is given for finding a correct value for x_2
	$x_3 = 2 \times 1.633^{-0.633} = 1.466$ $x_4 = 2 \times 1.466^{-0.466} = 1.673$	A1	This mark is given for finding a correct value for x_4
(d)	For example: x _n oscillates is periodic is non-convergent	B1	This mark is given for a valid statement about the long-term behaviour of x_n
	between 1 and 2	B1	This mark is given for stating that the behaviour is between 1 and 2