Question 13 (Total 10 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$5.4 = \pi r^2 h + \frac{2}{3} \pi r^3$	B1	This mark is given for a method to find the volume of the cylinder and the semi- hemisphere
	$A = 3\pi r^{2} + 2\pi \left(\frac{5.4 - \frac{2}{3}\pi r^{3}}{\pi r^{2}}\right)$	M1	This mark is given for a method to find the surface area of the tank
		A1	This mark is given for finding an expression for the surface area of the tank
	$A = 3\pi r^2 + \frac{10.8}{r} - \frac{4\pi r^2}{3}$	Al	This mark is given for the correct answer only
	$= \frac{10.8}{r} + \frac{5\pi r^2}{3}$		
(b)	$A = \frac{10.8}{r} + \frac{5\pi r^2}{3}$	M1	This mark is given for a method to differentiate to find <i>r</i>
	$\Rightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = -\frac{10.8}{r^2} + \frac{10\pi r}{3}$	A1	This mark is given for accurately differentiating to find <i>r</i>
	When $\frac{dA}{dr} = 0$, $-\frac{10.8}{r^2} + \frac{10\pi r}{3} = 0$	M1	This mark is given for a method to set $\frac{dA}{dr} = 0$ to find a value for r
	<i>r</i> = 1.3	A1	This mark is given for finding the radius for which the surface area is a minimum
(c)	$A = \frac{10.8}{1.01} + \frac{5\pi (1.01)^2}{3}$	M1	This mark is given for a method to substitute a value for <i>r</i>
	$A = 16.03 \text{ m}^2$ $A = 16 \text{ m}^2$	A1	This mark is given for correctly finding the minimum surface area of the tank (to the nearest integer)