Question 14 (Total 15 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\mathrm{d} h=-2(6-u) \mathrm{d} u$	B1	This mark is given for finding an expression for $\mathrm{d} h$
	$\int \frac{\mathrm{d} h}{6-\sqrt{ } h}=\int \frac{-2(6-u) \mathrm{d} u}{6-\sqrt{ } h}$	M1	This mark is given for substituting $u=6-\sqrt{h}$ into the integral
	$=\int-\frac{12}{u}+2 \mathrm{~d} u$	M1	This mark is given for a method to find a simplified version of the integral
	$\begin{aligned} & -12 \ln u+2 u+c \\ & =-12 \ln (6-\sqrt{ } h)+2(6-\sqrt{ } h)+c \end{aligned}$	M1	This mark is given for integrating with respect to u to produce an expression in terms of h
		A1	This mark is given for a correct expression for the integral
	$=-12 \ln (6-\sqrt{ } h)-2 \sqrt{ } h+k$	A1	This mark is given for a full proof to arrive at the answer as shown (appreciating that $k=c+12$)
(b)	$\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \Rightarrow 6-\sqrt{ } h=0$	M1	This mark is given for a setting $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$
	$0<h<36$	A1	This mark is given for deducing the range of the heights of the trees for this model
(c)	$\begin{aligned} & \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{t^{025}(4-\sqrt{ } h)}{20} \Rightarrow \frac{\mathrm{~d} h}{(4-\sqrt{ } h)}= \\ & \frac{t^{025} \mathrm{~d} t}{20} \end{aligned}$	B1	This mark is given for separating the variables
	$-12 \ln (6-\sqrt{ } h)-2 \sqrt{ } h+k=\frac{t^{125}}{25}$	M1	This mark is given for a method to integrate both sides of the equation
		A1	This mark is given for integrating both sides of the equation correctly
	When $t=0$ and $h=1,-12 \ln 5-2+k=0$ $k=2+12 \ln 5$	M1	This mark is given for substituting values of $t=0$ and $h=1$ to find a value for k
	$\begin{aligned} & \text { When } h=15 \text {, } \\ & -12 \ln (6-\sqrt{ } 15)-2 \sqrt{ } 15+2+12 \ln 5= \\ & \frac{t^{125}}{25} \end{aligned}$	M1	This mark is given for a method to find a value for t by substituting $h=$ 15 into the equation

Part	Working or answer an examiner might expect to see	Mark	Notes
	$t^{125}=112.7661 \ldots \Rightarrow t=\sqrt[125]{112.7661}$	M1	This mark is given for simplifying to find an expression for t
	$t=43.83$ years	A1	This mark is given for correctly finding the time the tree would take to reach a height of 15 metres

