Question 14 (Total 15 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\mathrm{d}h = -2(6-u) \mathrm{d}u$	B1	This mark is given for finding an expression for d <i>h</i>
	$\int \frac{\mathrm{d}h}{6-\sqrt{h}} = \int \frac{-2(6-u)\mathrm{d}u}{6-\sqrt{h}}$	M1	This mark is given for substituting $u = 6 - \sqrt{h}$ into the integral
	$= \int -\frac{12}{u} + 2 \mathrm{d}u$	M1	This mark is given for a method to find a simplified version of the integral
	$-12 \ln u + 2u + c$ = -12 ln (6 - \sqrt{h}) + 2(6 - \sqrt{h}) + c	M1	This mark is given for integrating with respect to u to produce an expression in terms of h
		A1	This mark is given for a correct expression for the integral
	$= -12 \ln \left(6 - \sqrt{h}\right) - 2\sqrt{h} + k$	A1	This mark is given for a full proof to arrive at the answer as shown (appreciating that $k = c + 12$)
(b)	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0 \implies 6 - \sqrt{h} = 0$	M1	This mark is given for a setting $\frac{dh}{dt} = 0$
	0 < <i>h</i> < 36	A1	This mark is given for deducing the range of the heights of the trees for this model
(c)	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{t^{0.25}(4 - \sqrt{h})}{20} \implies \frac{\mathrm{d}h}{(4 - \sqrt{h})} = \frac{t^{0.25}\mathrm{d}t}{20}$	B1	This mark is given for separating the variables
	$-12\ln(6 - \sqrt{h}) - 2\sqrt{h} + k = \frac{t^{125}}{25}$	M1	This mark is given for a method to integrate both sides of the equation
		A1	This mark is given for integrating both sides of the equation correctly
	When $t = 0$ and $h = 1, -12 \ln 5 - 2 + k = 0$ $k = 2 + 12 \ln 5$	M1	This mark is given for substituting values of $t = 0$ and $h = 1$ to find a value for k
	When $h = 15$, $-12 \ln (6 - \sqrt{15}) - 2\sqrt{15} + 2 + 12 \ln 5 = \frac{t^{125}}{25}$	M1	This mark is given for a method to find a value for <i>t</i> by substituting $h =$ 15 into the equation

Part	Working or answer an examiner might	Mark	Notes
	expect to see		
	$t^{125} = 112.7661 \implies t = \sqrt[125]{112.7661}$	M1	This mark is given for simplifying to find an expression for <i>t</i>
	<i>t</i> = 43.83 years	A1	This mark is given for correctly finding the time the tree would take to reach a height of 15 metres