9. A research engineer is testing the effectiveness of the braking system of a car when it is driven in wet conditions.

The engineer measures and records the braking distance, d metres, when the brakes are applied from a speed of $V \text{ km h}^{-1}$.

Graphs of d against V and $\log_{10} d$ against $\log_{10} V$ were plotted.

The results are shown below together with a data point from each graph.

Figure 5

Figure 6

(*a*) Explain how Figure 6 would lead the engineer to believe that the braking distance should be modelled by the formula $d = kV^n$, where *k* and *n* are constants to be found.

(2)

Using the information given in Figure 5,

(*b*) find a complete equation for the model giving the values of *k* and *n* to 3 significant figures if necessary.

(4)

Sean is driving this car at 44 km h^{-1} in wet conditions when he notices a large puddle in the road 70 m ahead. It takes him 0.8 seconds to react before applying the brakes.

(c) Use your formula to find out if Sean will be able to stop before reaching the puddle.

(3)

(Total for Question 9 is 9 marks)