Question	Scheme	Marks	AOs
4 (a)	Deduces that gradient of l_2 is $-\frac{1}{2}$	B1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point (-2,3) $y-3 = -\frac{1}{2}(x+2)$	M1	1.1b
	$y = -\frac{1}{2}x + 2$	A1	1.1b
		(3)	
(b)	A point on l_1 is of the form $(x, 2x-1)$	B1	2.2a
	Uses the distance from $(x, 2x-1)$ to $(-2, 3)$ is $2\sqrt{13}$ $(x+2)^2 + (2x-4)^2 = (2\sqrt{13})^2 = 52$	M1 A1	3.1a 1.1b
	$x^{2} + 4x + 4 + 4x^{2} - 16x + 16 = 52 \Longrightarrow 5x^{2} - 12x - 32 = 0 *$	A1*	2.1
		(4)	
(c)	$5x^{2} - 12x - 32 = 0 \Longrightarrow (5x + 8)(x - 4) = 0$	M1	1.1b
	$x = -\frac{8}{5}, 4$	A1	1.1b
	Substitutes $x = -\frac{8}{5}$ into $y = 2x - 1$	M1	2.2a
	$B = \left(-\frac{8}{5}, -\frac{21}{5}\right)$	A1	1.1b
		(4)	
			(11 marks)

Notes:

(a)

B1: Uses the perpendicular rule to deduce that gradient of l_2 is $-\frac{1}{2}$

M1: Uses a changed gradient and (-2,3) to find the equation of l_2 . Look for $y-3 = "-\frac{1}{2}"(x+2)$

A1:
$$y = -\frac{1}{2}x + 2$$

(**b**)

B1: For deducing that *B* and *C* are of the form (x, 2x-1). Scored when *y* is replaced by (2x-1) when a simultaneous method is used.

M1: For using Pythagoras' theorem to set up an equation in *x*.

A1: For a correct unsimplified equation in x. $(x+2)^2 + (2x-4)^2 = 52$

A1*: For correct algebra and working leading to the given answer $5x^2 - 12x - 32 = 0$ (c)

M1: For a valid attempt to solve the given quadratic equation

A1:
$$x = -\frac{8}{5}$$
, 4 (You may ignore any reference to the 4)

M1: Substitutes their $x = -\frac{8}{5}$ into y = 2x - 1 and finds y

A1: $B = \left(-\frac{8}{5}, -\frac{21}{5}\right)$