Question	Scheme	Marks	AOs
6 (a)	Translates problem into maths $12000 = 2600 + 9d \Rightarrow d = (1044.4)$	M1	3.1b
	Uses the AP model to find $2600 + "d"$	M1	3.4
	3 644 or 3 645 (batteries in Year 2)	A1	1.1b
		(3)	
(b)	Translates problem into maths $12000 = 2600 \times r^9 \implies r = (1.185)$	M1	3.1b
	Uses the GP model to find $2600 \times "r"$	M1	3.4
	awrt 3 080 (batteries in Year 2)	A1	1.1b
		(3)	
(c)	Correct attempt at one sum Either $\frac{10}{2} \{2 \times 2600 + 9 \times "1044"\}$ or $\frac{2600("1.185"^{10}-1)}{"1.185"-1}$	M1	1.1b
	Attempts both sums and subtracts either way around $\frac{10}{2} \{2 \times 2600 + 9 \times "1044"\} - \frac{2600 ("1.185"^{-1} - 1)}{"1.185" - 1} = \dots$	dM1	3.1a
	Accept 10 200 or 10 300 batteries	A1	1.1b
		(3)	
		1	(9 marks)

Notes: (a)

M1: Attempts to use the AP model 12000 = 2600 + 9d to find a value for d

M1: Finds the number of batteries produced in year 2 by adding their value of d to 2600

A1: Calculates 3 644 or 3 645 (batteries in Year 2)

(b)

M1: Attempts to use the GP model $12000 = 2600r^9$ to find a value for r

M1: Finds the number of batteries produced in year 2 by multiplying their value of *r* by 2600

A1: Calculates awrt 3 080 (batteries in Year 2)

(c)

M1: Correct attempt at one of the sums using a correct equation and their values of d or r

Also accept
$$\frac{n}{2} \{a+l\} = \frac{10}{2} \{2600+12000\} = (73000)$$

dM1: Correct attempt at the difference between both sums using correct equations and their values of d or r**A1:** Accept 10 200 or 10 300 batteries depending upon accuracy used in (b)