Question	Scheme	Marks	AOs
7 (a)	$g\left(-\frac{1}{2}\right) = 4 \times -\frac{1}{8} + a \times \frac{1}{4} + 4 \times -\frac{1}{2} + b = 0$ (a+4b=10)	M1	2.1
	g''(x) = 24x + 2a	B1	1.1b
	$g''\left(\frac{1}{6}\right) = 4 + 2a = 0$	M1	2.1
	Solves to find values for <i>a</i> and <i>b</i>	M1	3.1a
	a = -2, b = 3	A1	1.1b
		(5)	
(b)	Finds $g'(x) = 12x^2 - 4x + 4$ for their value of <i>a</i> and attempts show that it cannot $= 0$ e.g. $12x^2 - 4x + 4 = 12\left(x - \frac{1}{6}\right)^2 + \frac{11}{3}$	M1	3.1a
	For all x, $g'(x) > 0$ Hence $g'(x) \neq 0$ so no stationary points.	A1	2.4
		(2)	
	(7 mark		

Notes:

(a)

M1: Identifies the fact that (2x+1) is a factor to deduce that $g\left(-\frac{1}{2}\right) = 4 \times -\frac{1}{8} + a \times \frac{1}{4} + 4 \times -\frac{1}{2} + b = 0$ **B1:** Differentiates twice to state (or use) g''(x) = 24x + 2a

M1: Identifies the fact that y = g(x) has a point of inflection when $x = \frac{1}{6}$ to deduce that

$$g''\left(\frac{1}{6}\right) = 4 + 2a = 0$$

M1: A complete method to find values for *a* and *b* **A1:** a = -2, b = 3

(b)

M1: Finds $g'(x) = 12x^2 - 4x + 4$ for their value of *a* and attempts show that it cannot = 0

E.g. Attempts to show that g'(x) > 0, or attempts to solve g'(x) = 0

A1: For all x, g'(x) > 0 Hence $g'(x) \neq 0$ so no stationary points.