Question	Scheme	Marks	AOs
12 (a)	Sets $3 \times 2^{2x} = 96\sqrt{2} \Longrightarrow 2^{2x} = 32\sqrt{2}$	M1	1.1b
	$\Rightarrow 2^{2x} = 2^5 \times 2^{\frac{1}{2}} \Rightarrow 2x = 5 + \frac{1}{2}$	M1	2.1
	$\Rightarrow x = \frac{11}{4}$	A1	1.1b
		(3)	
(b)	Sets $6^{3-x} = 3 \times 2^{2x}$ and attempts to take logs with one correct law	M1	2.1
	$(3-x)\log 6 = \log 3 + 2x\log 2$	A1	1.1b
	Takes \log_2 and uses $\log_2 6 = \log_2 2 + \log_2 3$ and $\log_2 2 = 1$	M1	2.1
	$(3-x)(\log_2 3+1) = \log_2 3+2x$ $\Rightarrow (2+1+\log_2 3)x = 3\log_2 3+3-\log_2 3$	ddM1	1.1b
	$x = \frac{3 + 2\log_2 3}{3 + \log_2 3} *$	A1*	2.1
		(5)	
(8 marks)			

Notes:

(a)

M1: Sets $3 \times 2^{2x} = 96\sqrt{2}$ and proceeds to make 2^{2x} the subject

M1: Sets both sides as powers of 2 and proceeds to a linear equation in x. Alternatively takes logs of both sides and uses appropriate laws to proceeds to a linear equation in x

A1: $x = \frac{11}{4}$ or equivalent

 $2^{2x} = 32\sqrt{2} \Rightarrow 2x = \log_2 32\sqrt{2} \Rightarrow 2x = \frac{11}{2}$ only scores the first M1 unless clear reasoning is shown to

explain the $\frac{11}{2}$. E.g. $2^{2x} = 32\sqrt{2} \Rightarrow 2x = \log_2 32\sqrt{2} \Rightarrow 2x = \log_2 \left(2^5 \times 2^{\frac{1}{2}}\right) \Rightarrow 2x = \log_2 \left(2^{\frac{11}{2}}\right)$

(b)

M1: Sets $6^{3-x} = 3 \times 2^{2x}$ and attempts to take logs with one correct law.

For example $\log 6^{3-x} = 3 - x \log 6$ would be condoned and allowed as an attempt

A1: For a correct linear equation in x. $(3-x)\log 6 = \log 3 + 2x\log 2$

M1: The candidate must be seen to be taking \log_2 's and using both $\log_2 6 = \log_2 2 + \log_2 3$ and $\log_2 2 = 1$

ddM1: Dependent upon both M's, it is for an attempt to make x the subject.

A1*: Proceeds correctly to $x = \frac{3 + 2\log_2 3}{3 + \log_2 3}$ showing correct intermediate steps