Question	Scheme	Marks	AOs
13	Assumption: There exists positive integers <i>a</i> and <i>b</i> such that $a + 2b = \sqrt{8ab}$ and <i>a</i> is odd	B1	2.1
	$a+2b = \sqrt{8ab} \Longrightarrow a^2 + 4ab + 4b^2 = 8ab$ $\implies a^2 - 4ab + 4b^2 = 0$	M1	1.1b
	Solving $\Rightarrow (a-2b)^2 = 0 \Rightarrow a = 2b$	A1	3.1a
	This forms a contradiction as $a = 2b$ means that <i>a</i> is even (since <i>b</i> is an integer). Hence the assumption is false and so the given statement is true	A1	2.4
		(4)	