3(a)	$2\log(4-x) = \log(4-x)^2$	B1	1.2
	$2\log(4-x) = \log(x+8) \Longrightarrow \log(4-x)^2 = \log(x+8)$		
	$\left(4-x\right)^2 = (x+8)$		
	or $2 \log (A_{-}) + \log (-+2) + \log (A_{-})^2 + \log (-+2) = 0$	M1	1.1b
	$2\log(4-x) = \log(x+8) \Rightarrow \log(4-x) - \log(x+8) = 0$		
	$\frac{(4-x)}{(x+8)} = 1$		
	$16-8x+x^2 = x+8 \Longrightarrow x^2-9x+8 = 0*$	A1*	2.1
		(3)	
	(a) Alternative - working backwards:		
	(a) Alternative - working backwards: $x^2 - 9x + 8 = 0 \Longrightarrow (4 - x)^2 - x - 8 = 0$	B1	1.2
	(a) Alternative - working backwards: $x^{2} - 9x + 8 = 0 \Longrightarrow (4 - x)^{2} - x - 8 = 0$ $\implies (4 - x)^{2} = x + 8$	B1	1.2
	(a) Alternative - working backwards: $x^{2} - 9x + 8 = 0 \Longrightarrow (4 - x)^{2} - x - 8 = 0$ $\Rightarrow (4 - x)^{2} = x + 8$ $\Rightarrow \log(4 - x)^{2} = \log(x + 8)$	B1 M1	1.2 1.1b
	(a) Alternative - working backwards: $x^{2} - 9x + 8 = 0 \Rightarrow (4 - x)^{2} - x - 8 = 0$ $\Rightarrow (4 - x)^{2} = x + 8$ $\Rightarrow \log(4 - x)^{2} = \log(x + 8)$ $\Rightarrow 2\log(4 - x) = \log(x + 8) * \text{Hence proved.}$	B1 M1 A1	1.2 1.1b 2.1
(b)	(a) Alternative - working backwards: $x^{2} - 9x + 8 = 0 \Longrightarrow (4 - x)^{2} - x - 8 = 0$ $\Rightarrow (4 - x)^{2} = x + 8$ $\Rightarrow \log (4 - x)^{2} = \log (x + 8)$ $\Rightarrow 2\log (4 - x) = \log (x + 8) * \text{Hence proved.}$ (i) (x =) 1, 8	B1 M1 A1 B1	1.2 1.1b 2.1 1.1b
(b)	(a) Alternative - working backwards: $x^{2} - 9x + 8 = 0 \Rightarrow (4 - x)^{2} - x - 8 = 0$ $\Rightarrow (4 - x)^{2} = x + 8$ $\Rightarrow \log (4 - x)^{2} = \log (x + 8)$ $\Rightarrow 2\log (4 - x) = \log (x + 8) * \text{Hence proved.}$ (i) (x =) 1, 8 (ii) 8 is not a solution as log(4 - 8) cannot be found	B1 M1 A1 B1 B1	1.2 1.1b 2.1 1.1b 2.3
(b)	(a) Alternative - working backwards: $x^{2} - 9x + 8 = 0 \Rightarrow (4 - x)^{2} - x - 8 = 0$ $\Rightarrow (4 - x)^{2} = x + 8$ $\Rightarrow \log (4 - x)^{2} = \log (x + 8)$ $\Rightarrow 2\log (4 - x) = \log (x + 8) * \text{Hence proved.}$ (i) (x =) 1, 8 (ii) 8 is not a solution as log(4 - 8) cannot be found	B1 M1 A1 B1 B1 (2)	1.2 1.1b 2.1 1.1b 2.3

Notes:

(a)

B1: States or uses $2\log(4-x) = \log(4-x)^2$

M1: Correct attempt at eliminating the logs to form a quadratic equation in *x*.

Note that this may be implied by e.g. $\log \frac{(4-x)^2}{(x+8)} = 0 \Longrightarrow (4-x)^2 = x+8$

A1*: Proceeds to the given answer with at least one line where the $(4 - x)^2$ has been multiplied out. There must be no errors or omissions but condone invisible brackets around the arguments of the logs e.g. allo $log16 - 8x + x^2$ for $log(16 - 8x + x^2)$ and log x + 8 for log(x + 8)

Note we will allow a start of $(4-x)^2 = x+8$ with no previous work for full marks.

Some examples of how to mark (a) in particular cases:

$$2\log(4-x) = \log(x+8) \Longrightarrow \log(4-x)^2 = \log(x+8) \Longrightarrow \frac{\log(4-x)^2}{\log(x+8)} = 1$$

$$2\log(4-x) = \log(x+8) \Longrightarrow \log(4-x)^2 - \log(x+8) = 0 \Longrightarrow (4-x)^2 - x - 8 = 0$$
$$\implies 16 - 8x + x^2 - x - 8 \Longrightarrow x^2 - 9x + 8 = 0$$
Scores B1M1A1

$$2\log(4-x) = \log(x+8) \Longrightarrow \log(4-x)^2 - \log(x+8) = 0 \Longrightarrow \frac{\log(4-x)^2}{\log(x+8)} = 0$$
$$\Rightarrow \frac{(4-x)^2}{(x+8)} = 1 \Longrightarrow 16 - 8x + x^2 = x + 8 \Longrightarrow x^2 - 9x + 8 = 0$$
Scores B1M0A0

(a) Alternative:

- B1: Writes $x^2 9x + 8 = 0$ as $(4 x)^2 x 8 = 0$ or equivalent
- M1: Proceeds correctly to reach $\log(4-x)^2 = \log(x+8)$

A1: Obtains $2\log(4-x) = \log(x+8)$ and makes a (minimal) conclusion e.g. hence proved, QED, #, square etc.

- **(b)**
- **B1:** Writes down (x = 1, 8
- **B1:** Chooses 8 (no follow through here) and gives a reason why it should be rejected by referring to logs and which log it is.

They must refer to the 8 as the required value but allow e.g. $x \neq 8$ and there must be a reference to $\log(4 - x)$ or log of lhs or $\log(-4)$ or the 4 – 8. Some acceptable reasons are: $\log(-4)$ can't be found/worked out/is undefined, $\log(-4)$ gives math error, $\log(-4) = n/a$, lhs is $\log(\text{negative})$ so reject, you can't do the log of a negative number which would happen with 4 – 8

Do **not** allow "you can't have a negative log" unless this is clarified further and do **not** allow "you get a math error" in isolation

There must be no contradictory statements.

Note that this is an independent mark but must have x = 8 (i.e. may have solved to get x = -1, 8 for first B mark)