6(a)	$x^{2}+8x-3 = (Ax+B)(x+2)+C \text{ or } Ax(x+2)+B(x+2)+C$		
	$\Rightarrow A =, B =, C =$		
	or		
	x+6	MI	1 11.
	$\frac{x+6}{x+2}\overline{)x^2+8x-3}$	M1	1.1b
	$\frac{x^2+2x}{2}$		
	6 <i>x</i> – 3		
	$\frac{6x+12}{2}$		
	-15		
	Two of $A = 1, B = 6, C = -15$	A1	1.1b
	All three of $A = 1, B = 6, C = -15$	A1	1.1b
		(3)	
6(b)	$\int \frac{x^2 + 8x - 3}{x + 2} dx = \int x + 6 - \frac{15}{x + 2} dx = \dots - 15 \ln(x + 2)$	M1	1.1b
	$=\frac{1}{2}x^{2}+6x-15\ln(x+2) (+c)$	A1ft	1.1b
	$\int_{0}^{6} \frac{x^{2} + 8x - 3}{x + 2} \mathrm{d}x = \left[\frac{1}{2}x^{2} + 6x - 15\ln\left(x + 2\right)\right]_{0}^{6}$		
	$= (18 + 36 - 15\ln 8) - (0 + 0 - 15\ln 2)$	M1	2.1
	= $18 + 36 - (15 - 45)\ln 2$ or e.g. $18 + 36 + 15\ln\left(\frac{2}{8}\right)$		
	$= 54 - 30 \ln 2$	A1	1.1b
		(4)	
(7 marks)			

Notes:

(a)

M1: Multiplies by (x + 2) and attempts to find values for *A*, *B* and *C* e.g. by comparing coefficients or substituting values for *x*. If the method is unclear, at least 2 terms must be correct on rhs.

Or attempts to divide $x^2 + 8x - 3$ by x + 2 and obtains a linear quotient and a constant remainder.

This mark may be implied by 2 correct values for A, B or C

A1: Two of A = 1, B = 6, C = -15. But note that <u>just</u> performing the division correctly is insufficient and they must clearly identify their *A*, *B*, *C* to score any accuracy marks.

A1: All three of
$$A = 1$$
, $B = 6$, $C = -15$

This is implied by stating $\frac{x^2 + 8x - 3}{x + 2} = x + 6 - \frac{15}{x + 2}$ or within the integral in (b)

(b)

M1: Integrates an expression of the form $\frac{C}{x+2}$ to obtain $k \ln(x+2)$.

Condone the omission of brackets around the "x + 2"

A1ft: Correct integration ft on their $Ax + B + \frac{C}{x+2}$, $(A, B, C \neq 0)$ The brackets should be present around the "x + 2"

unless they are implied by subsequent work.

- M1: Substitutes both limits 0 and 6 into an expression that contains an x or x^2 term or both and a ln term and subtracts either way round WITH fully correct log work to combine two log terms (but allow sign errors when removing brackets) leading to an answer of the form $a + b \ln c$ (*a*, *b* and *c* not necessarily integers) e.g. if they expand to get $-15\ln 8 - 15\ln 2$ followed by $-15\ln 16$ and reach $a + b \ln c$ then allow the M mark
- A1: $54 30 \ln 2$ (Apply isw once a correct answer is seen)