

	$t = 0, \ \theta = 18 \Longrightarrow 18 = A - B$		
	and		
	$t = 10, \ \theta = 44 \Longrightarrow 44 = A - Be^{-0.7}$	M1	3.1a
	and		
	$\Rightarrow A =, B =$		
		A1	
	At least one of: $A = 69.6$, $B = 51.6$ but allow awrt 70/awrt 52	M1 on	1.1b
		EPEN	
	$\theta = 69.6 - 51.6e^{-0.07t}$	A1	3.3
		(4)	
(b)	The maximum temperature is "69.6"(°C) (according to the		
	model)	D 1 ft	3.4
	(The model has an) upper limit of "69.6"(°C)	DIII	5.4
	(The model suggests that) the boiling point is "69.6"(°C)		
	Model is not appropriate as 69.6(°C) is much lower than	B1ft	3 59
	78(°C)	DIII	J.Ja
		(2)	
			(6 marks)

Notes:

(a)

M1: Makes the first key step in the solution of the problem. Substitutes t = 0 and $\theta = 18$ or t = 10 and $\theta = 44$ into the equation of the model to obtain an equation connecting *A* and *B*.

Note that $18 = A - Be^0$ scores M0 unless 18 = A - B is seen or implied later.

If they do not obtain an equation in A and B using the first conditions e.g. they have 18 = A - 1 then they can

score this mark if they substitute A = 19 directly into $44 = A - Be^{-07}$ as an equation in A and B is implied.

M1: Substitutes t = 0 and $\theta = 18$ and t = 10 and $\theta = 44$ to obtain 2 equations connecting A and B and then proceeds to solves their equations in A and B simultaneously to obtain values for both constants. Do not be too concerned with the processing as long as values for A and B are obtained.

A1(M1 on EPEN): For A = awrt 70 or B = awrt 52

A1: For $\theta = 69.6 - 51.6e^{-0.07t}$ Must be a <u>fully correct equation as shown</u> but allow recovery if seen in (b). Note that some candidates evaluate e^0 as 0 and so obtain A = 18 and then write $44 = 18 - Be^{-0.7}$ and solve for *B*. Such attempts can score M1M0A0A0 only.

(b)

B1ft: Identifies *A* as the boiling point/maximum temperature in the model. Follow through their *A*.

B1ft: Makes a valid conclusion (valid/not valid, good/not good etc.) that refers to the 78 and includes a reference to a significant/large difference

Alternative provided their *A* < 78

B1ft: $\theta = 69.6 - 51.6e^{-0.07t} = 78 \Longrightarrow 51.6e^{-0.07t} = 69.6 - 78 = -8.4$

 $\Rightarrow e^{-0.07t} = -\frac{7}{43}$ and $\ln\left(-\frac{7}{43}\right)$ and makes a reference to the fact that the equation cannot be solved or e.g. cannot

take log of a negative number. You can condone numerical slips in the calculation.

B1ft: Model is not appropriate as 69.6(°C) is much lower than 78(°C)

Minimum for both marks: The model is not appropriate as "69.6" (°C) is much lower than 78(°C)

Note that these marks are not available if their equation is solvable. Note also that B0B1 is not possible.