

	P(-4,-5)	B1	2.2a
		(2)	
(b)	$3x + 40 = -2(x+4) - 5 \Longrightarrow x = \dots$	M1	1.1b
	<i>x</i> = -10.6	A1	2.1
		(2)	
(c)	a > 2	B1	2.2a
	$y = ax \Longrightarrow -5 = -4a \Longrightarrow a = \frac{5}{4}$	M1	3.1a
	$\{a:a\leqslant 1.25\}\cup\{a:a>2\}$	A1	2.5
		(3)	
			(7 marks)

Notes:

(a)

B1: One correct coordinate. Either x = -4 or y = -5 or (-4, ...) or (..., -5) seen.

B1: Deduces that P(-4, -5) Accept written separately e.g. x = -4, y = -5

(b)

M1: Attempts to solve $3x + 40 = -2(x+4) - 5 \Rightarrow x = \dots$ Must reach a value for x.

You may see the attempt crossed out but you can still take this as an attempt to solve the required equation.

A1: x = -10.6 oe e.g. $-\frac{53}{5}$ only. If other values are given, e.g. x = -37 they must be rejected or the $-\frac{53}{5}$ clearly chosen

as their answer. Ignore any attempts to find y.

Alternative by squaring:

$$3x + 40 = 2|x + 4| - 5 \Longrightarrow 3x + 45 = 2|x + 4| \Longrightarrow 9x^{2} + 270x + 2025 = 4(x^{2} + 8x + 16)$$
$$\Longrightarrow 5x^{2} + 238x + 1961 = 0 \Longrightarrow x = -37, -\frac{53}{5}$$

M1 for isolating the |x+4|, squaring both sides and solving the resulting quadratic

A1 for selecting the
$$-\frac{53}{5}$$

Correct answer with no working scores both marks.

(c)

B1: Deduces that a > 2

M1: Attempts to find a value for *a* using their P(-4, -5)

Alternatively attempts to solve ax = 2(x + 4) - 5 and ax = 2(x + 4) - 5 to obtain a value for *a*. A1: Correct range in acceptable set notation.

$$\{a: a \le 1.25\} \cup \{a: a > 2\}$$

$$\{a: a \le 1.25\}, \{a: a > 2\}$$
Examples: $\{a: a \le 1.25 \text{ or } a > 2\}$

$$\{a: a \le 1.25 \text{ or } a > 2\}$$

$$\{a: a \le 1.25, a > 2\}$$

$$(-\infty, 1.25] \cup (2, \infty)$$

$$(-\infty, 1.25], (2, \infty)$$