Question	Scheme	Marks	AOs
11(a)	$x=-4$ or $y=-5$	B1	1.1 b

	$P(-4,-5)$	B1	2.2a
		(2)	
(b)	$3 x+40=-2(x+4)-5 \Rightarrow x=\ldots$	M1	1.1b
	$x=-10.6$	A1	2.1
		(2)	
(c)	$a>2$	B1	2.2a
	$y=a x \Rightarrow-5=-4 a \Rightarrow a=\frac{5}{4}$	M1	3.1a
	$\{a: a \leqslant 1.25\} \cup\{a: a>2\}$	A1	2.5
		(3)	
(7 marks)			

Notes:

(a)

B1: One correct coordinate. Either $x=-4$ or $y=-5$ or $(-4, \ldots)$ or $(\ldots,-5)$ seen.
B1: Deduces that $P(-4,-5)$ Accept written separately e.g. $x=-4, y=-5$
(b)

M1: Attempts to solve $3 x+40=-2(x+4)-5 \Rightarrow x=\ldots$ Must reach a value for x.
You may see the attempt crossed out but you can still take this as an attempt to solve the required equation.
A1: $x=-10.6$ oe e.g. $-\frac{53}{5}$ only. If other values are given, e.g. $x=-37$ they must be rejected or the $-\frac{53}{5}$ clearly chosen as their answer. Ignore any attempts to find y.
Alternative by squaring:

$$
\begin{aligned}
3 x+40=2|x+4|-5 & \Rightarrow 3 x+45=2|x+4| \Rightarrow 9 x^{2}+270 x+2025=4\left(x^{2}+8 x+16\right) \\
& \Rightarrow 5 x^{2}+238 x+1961=0 \Rightarrow x=-37,-\frac{53}{5}
\end{aligned}
$$

M1 for isolating the $|x+4|$, squaring both sides and solving the resulting quadratic A1 for selecting the $-\frac{53}{5}$
Correct answer with no working scores both marks.

(c)

B1: Deduces that $a>2$
M1: Attempts to find a value for a using their $P(-4,-5)$
Alternatively attempts to solve $a x=2(x+4)-5$ and $a x=2(x+4)-5$ to obtain a value for a.
A1: Correct range in acceptable set notation.

$$
\begin{aligned}
& \{a: a \leqslant 1.25\} \cup\{a: a>2\} \\
& \{a: a \leqslant 1.25\},\{a: a>2\}
\end{aligned}
$$

Examples: $\{a: a \leqslant 1.25$ or $a>2\}$

$$
\{a: a \leqslant 1.25, a>2\}
$$

$$
(-\infty, 1.25] \cup(2, \infty)
$$

$$
(-\infty, 1.25],(2, \infty)
$$

