Question	Scheme	Marks	AOs
14 (a)	C is		
	$(x-r)^{2} + (y-r)^{2} = r^{2}$ or $x^{2} + y^{2} - 2rx - 2ry + r^{2} = 0$	B1	2.2a
	$y = 12 - 2x, \ x^2 + y^2 - 2rx - 2ry + r^2 = 0$		
	$\Rightarrow x^{2} + (12 - 2x)^{2} - 2rx - 2r(12 - 2x) + r^{2} = 0$	M1	1.1b
	or		

	$r^2 - 18r + 36 = 0$ or any multiple of this equation	A1	1.1b
(b)	$b^{2} - 4ac = 0 \Longrightarrow (2r - 48)^{2} - 4 \times 5 \times (r^{2} - 24r + 144) = 0$	M1	3.1a
		(3)	
	$\Rightarrow 5x^{2} + (2r - 48)x + (r^{2} - 24r + 144) = 0 *$	A1*	2.1
	$x^{2} + 144 - 48x + 4x^{2} - 2rx - 24r + 4rx + r^{2} = 0$		
	$\Rightarrow (x-r)^2 + (12-2x-r)^2 = r^2$		
	$y = 12 - 2x$, $(x - r)^{2} + (y - r)^{2} = r^{2}$		

Notes:

(a)

- **B1:** Deduces the correct equation of the circle
- M1: Attempts to form an equation with terms of the form x^2 , x, r^2 , and xr only using $y = 12 \pm 2x$ and their circle equation which must be of an appropriate form. I.e. includes or implies an x^2 , y^2 , r^2 such as $x^2 + y^2 = r^2$. If their circle equation starts off as e.g. $(x \pm a)^2 + (y \pm b)^2 = r^2$ then the B mark and the M mark can be awarded when the "*a*" and "*b*" are replaced by *r* or -r as appropriate for their circle equation.
- A1*: Uses correct and accurate algebra leading to the given solution.
- **(b)**
- M1: Attempts to use $b^2 4ac...0$ o.e. with $a = 5, b = 2r 48, c = r^2 24r + 144$ and where ... is "=" or any inequality Allow minor slips when copying the *a*, *b* and *c* provided it does not make the work easier and allow **their** *a*, *b* and *c* if they are similar expressions.

FYI
$$(2r-48)^2 - 4 \times 5 \times (r^2 - 24r + 144) = 4r^2 - 192r + 2304 - 20r^2 + 480r - 2880 = -16r^2 + 288r - 576$$

- A1: Correct quadratic equation in r (or inequality). Terms need not be all one side but must be collected.
 - E.g. allow $r^2 18r = -36$ and allow any multiple of this equation (or inequality).
- dM1: Correct attempt to solve their 3TQ in r. Dependent upon previous M
- A1: Careful and accurate work leading to both answers in the required form (must be simplified surds)