

	$r = \sqrt[5]{3}$ oe only	A1 (4)	1.1b
	or e.g. $1 - r^{10} = 4(1 - r^5) \Longrightarrow (1 - r^5)(1 + r^5) = 4(1 - r^5) \Longrightarrow r^5 = \dots$		2.1
	$r^{10} - 4r^5 + 3 = 0 \Longrightarrow (r^5 - 1)(r^5 - 3) = 0 \Longrightarrow r^5 = \dots$	1) (1	2.1
	$1 - r^{10} = 4(1 - r^5)$	A1	1.1b
	Equation in r^{10} and r^5 (and possibly $1 - r$)		
(b)	$\frac{a(1-r^{10})}{1-r} = 4 \times \frac{a(1-r^5)}{1-r} \text{ or } 4 \times \frac{a(1-r^{10})}{1-r} = \frac{a(1-r^5)}{1-r}$	M1	3.1a
		(4)	
	$S_n(1-r) = a(1-r^n) \Longrightarrow S_n = \frac{a(1-r^n)}{(1-r)}*$	A1*	2.1

Notes:

(a)

B1: Writes out the sum or lists terms. Condone the omission of *S*.

The sum must include the first and last terms and (at least) two other correct terms and no incorrect terms e.g. ar^n Note that the sum may be seen embedded within their working.

M1: For the key step in attempting to multiply the first series by *r* and subtracting.

A1: $S_n - rS_n = a - ar^n$ either way around but condone one side being prematurely factorised (but not both)

following correct work but this could follow B0 if insufficient terms were shown.

A1*: Depends on all previous marks. Proceeds to given result showing all steps including seeing both sides unfactorised at some point in their working.

Note: If terms are <u>listed</u> rather than <u>added</u> then allow the first 3 marks if otherwise correct but withhold the final mark.

(b)

- M1: For the correct strategy of producing an equation in just r^{10} and r^5 (and possibly (1 r)) with the "4" on either side using the result from part (a) and makes progress to at least cancel through by *a* Some candidates retain the "1 *r*" and start multiplying out e.g. $(1 r)(1 r^{10})$ and this mark is still available as long as there is progress in cancelling the "*a*".
- A1: Correct equation with the *a* and the 1 r cancelled. Allow any correct equation in just r^5 and r^{10}
- **dM1:** Depends on the first M. Solves as far as $r^5 = \dots$ by solving a 3 term quadratic in r^5 by a valid method see general guidance or by difference of 2 squares see above

A1: $r = \sqrt[5]{3}$ oe only. The solution r = 1 if found must be rejected here.

(b) Note: For candidates who use
$$S_5 = 4S_{10}$$
 expect to see:

$$4 \times \frac{a(1-r^{10})}{1-r} = \frac{a(1-r^5)}{1-r} \Rightarrow 4(1-r^{10}) = (1-r^5) \text{ M1A0}$$
Example for r_{a}^{a} : $3 = 0 \Rightarrow (4r^5+3)(r^5-1) = 0 \Rightarrow r^5 = ... \text{ or } 4(1-r^5)(1+r^5) = (1-r^5) \Rightarrow r^5 = ... \text{ dM1A0}$

$$\frac{a \cdot r_5}{r_5} = a + ar + ar^3 + ar^3 + ar^{a-1} + ar^{a-1}$$

$$S_{1}-rS_{n} = \alpha (1-r^{n})$$

$$S_{n}(1-r) = \alpha (1-r^{n})$$

This scores B1M1A1A0:

B1: Writes down the sum including first and last terms and at least 2 other correct terms and no incorrect terms

M1: Multiplies by r and subtracts

A1: Correct equation (we allow one side to be prematurely factorised)

A0: One side was prematurely factorised