Question	Scheme	Marks	AOs
$\mathbf{1 6}$	NB any natural number can be expressed in the form: $3 k, 3 k+1,3 k+2$ or equivalent e.g. $3 k-1,3 k, 3 k+1$		
	Attempts to square any two distinct cases of the above	M1	3.1a
	Achieves accurate results and makes a valid comment for any two of the possible three cases: E.g. $(3 k)^{2}=9 k^{2}\left(=3 \times 3 k^{2}\right)$ is a multiple of 3	A1 M1 on EPEN	1.1b

	$(3 k+1)^{2}=9 k^{2}+6 k+1=3 \times\left(3 k^{2}+2 k\right)+1$ is one more than a multiple of 3 $\begin{aligned} & (3 k+2)^{2}=9 k^{2}+12 k+4=3 \times\left(3 k^{2}+4 k+1\right)+1 \\ & \left(\text { or }(3 k-1)^{2}=9 k^{2}-6 k+1=3 \times\left(3 k^{2}-2 k\right)+1\right) \end{aligned}$ is one more than a multiple of 3		
	Attempts to square in all 3 distinct cases. E.g. attempts to square $3 k, 3 k+1,3 k+2$ or e.g. $3 k-1,3 k, 3 k+1$	$\begin{gathered} \text { M1 } \\ \text { A1 on } \\ \text { EPEN } \end{gathered}$	2.1
	Achieves accurate results for all three cases and gives a minimal conclusion (allow tick, QED etc.)	A1	2.4
		(4)	
			marks)

Notes:

M1: Makes the key step of attempting to write the natural numbers in any 2 of the 3 distinct forms or equivalent expressions, as shown in the mark scheme, and attempts to square these expressions.
A1(M1 on EPEN): Successfully shows for 2 cases that the squares are either a multiple of 3 or 1 more than a multiple of 3 using algebra. This must be made explicit e.g. reaches $3 \times\left(3 k^{2}+2 k\right)+1$ and makes a statement that this is one more than a multiple of 3 but also allow other rigorous arguments that reason why $9 k^{2}+6 k+1$ is one more than a multiple of 3 e.g. " $9 k^{2}$ is a multiple of 3 and $6 k$ is a multiple of 3 so $9 k^{2}+6 k+1$ is one more than a multiple of 3 "
M1(A1 on EPEN): Recognises that all natural numbers can be written in one of the 3 distinct forms or equivalent expressions, as shown in the mark scheme, and attempts to square in all 3 cases.
A1: Successfully shows for all 3 cases that the squares are either a multiple of 3 or 1 more than a multiple of 3 using algebra and makes a conclusion

