Question	Scheme	Marks	AOs
16	NB any natural number can be expressed in the form: 3k, $3k + 1$, $3k + 2$ or equivalent e.g. $3k - 1$, $3k$, $3k + 1$		
	Attempts to square any two distinct cases of the above	M1	3.1a
	Achieves accurate results and makes a valid comment for any two of the possible three cases: E.g. $(3k)^2 = 9k^2(=3 \times 3k^2)$ is a multiple of 3	A1 M1 on EPEN	1.1b

	$(3k+1)^{2} = 9k^{2} + 6k + 1 = 3 \times (3k^{2} + 2k) + 1$ is one more than a multiple of 3 $(3k+2)^{2} = 9k^{2} + 12k + 4 = 3 \times (3k^{2} + 4k + 1) + 1$ (or $(3k-1)^{2} = 9k^{2} - 6k + 1 = 3 \times (3k^{2} - 2k) + 1$)				
	is one more than a multiple of 3				
	Attempts to square in all 3 distinct cases. E.g. attempts to square $3k$, $3k + 1$, $3k + 2$ or e.g. $3k - 1$, $3k$, $3k + 1$	M1 A1 on EPEN	2.1		
	Achieves accurate results for all three cases and gives a minimal conclusion (allow tick, QED etc.)	A1	2.4		
		(4)			
(4 marks)					

Notes:

M1: Makes the key step of attempting to write the natural numbers in any 2 of the 3 distinct forms or equivalent expressions, as shown in the mark scheme, and attempts to square these expressions.

A1(M1 on EPEN): Successfully shows for 2 cases that the squares are either a multiple of 3 or 1 more than a multiple of 3 <u>using algebra</u>. This must be made explicit e.g. reaches $3 \times (3k^2 + 2k) + 1$ and makes a statement that this is

one more than a multiple of 3 but also allow other rigorous arguments that reason why $9k^2 + 6k + 1$ is one more than a multiple of 3 e.g. " $9k^2$ is a multiple of 3 and 6k is a multiple of 3 so $9k^2 + 6k + 1$ is one more than a multiple of 3"

- M1(A1 on EPEN): Recognises that all natural numbers can be written in one of the 3 distinct forms or equivalent expressions, as shown in the mark scheme, and attempts to square in all 3 cases.
- A1: Successfully shows for all 3 cases that the squares are either a multiple of 3 or 1 more than a multiple of 3 using algebra and makes a conclusion