Question	Scheme	Marks	AOs
9	$\begin{gathered} a=\left(\frac{3}{4}\right)^{2} \quad \text { or } a=\frac{9}{16} \\ \text { or } \\ r=-\frac{3}{4} \end{gathered}$	B1	2.2a
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\frac{\frac{9}{16}}{1-\left(-\frac{3}{4}\right)}=\ldots$	M1	3.1a
	$=\frac{9}{28}$ *	A1*	1.1b
		(3)	
	Alternative 1:		
	$\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\frac{-\frac{3}{4}}{1-\left(-\frac{3}{4}\right)}=\ldots \text { or } r=-\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=-\frac{3}{7}-\left(-\frac{3}{4}\right)$	M1	3.1a
	$=\frac{9}{28}$ *	A1*	1.1b
	Alternative 2:		
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{3}+\left(\frac{3}{4}\right)^{4}-\ldots$	B1	2.2a
	$\begin{gathered} =\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}+\ldots-\left(\frac{3}{4}\right)^{3}-\left(\frac{3}{4}\right)^{5}-\ldots \\ \left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}+\ldots=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \text { or }-\left(\frac{3}{4}\right)^{3}-\left(\frac{3}{4}\right)^{5}-\ldots=-\left(\frac{3}{4}\right)^{3}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \\ \sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{0}=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right)-\left(\frac{3}{4}\right)^{3}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \end{gathered}$	M1	3.1a
	$=\frac{9}{28}{ }^{*}$	A1*	1.1b
	Alternative 3:		
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=S=\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{3}+\left(\frac{3}{4}\right)^{4}-\ldots$	B1	2.2a
	$=\left(\frac{3}{4}\right)^{2}\left(1-\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^{2}-\ldots\right)=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}+S\right) \Rightarrow \frac{7}{16} S=\frac{9}{64} \Rightarrow S=\ldots$	M1	3.1a
	$=\frac{9}{28}$ *	A1*	1.1b

B1: Deduces the correct value of the first term or the common ratio. The correct first term can be seen as part of them writing down the sequence but must be the first term.
M1: Recognises that the series is infinite geometric and applies the sum to infinity GP formula with $a=\frac{9}{16}$ and $r= \pm \frac{3}{4}$
A1*: Correct proof

Alternative 1:

B1: Deduces the correct value for the sum to infinity (starting at $n=1$) or the common ratio
M1: Calculates the required value by subtracting the first term from their sum to infinity
A1*: Correct proof

Alternative 2:

B1: Deduces the correct value of the first term or the common ratio.
M1: Splits the series into "odds" and "evens", attempts the sum of both parts and calculates the required value by adding both sums
A1*: Correct proof

Alternative 3:

B1: Deduces the correct value of the first term
M1: A complete method by taking out the first term, expresses the rhs in terms of the original sum and rearranges for " S "
A1*: Correct proof

