Question	Scheme	Marks	AOs
13(a)	$y = \csc^{3}\theta \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = -3\csc^{2}\theta\csc\theta\cot\theta$	B1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3\mathrm{cosec}^3\theta\cot\theta}{2\cos2\theta}$	A1	1.1b
		(3)	
(b)	$y = 8 \Rightarrow \csc^3 \theta = 8 \Rightarrow \sin^3 \theta = \frac{1}{8} \Rightarrow \sin \theta = \frac{1}{2}$	M1	3.1a
	$\theta = \frac{\pi}{6} \Rightarrow \frac{dy}{dx} = \frac{-3\csc^3\left(\frac{\pi}{6}\right)\cot\left(\frac{\pi}{6}\right)}{2\cos\left(\frac{2\pi}{6}\right)} = \dots$		
	or $\sin \theta = \frac{1}{2} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{-3}{\sin^3 \theta} \times \frac{\cos \theta}{\sin \theta}}{2\left(1 - 2\sin^2 \theta\right)} = \frac{\frac{-3 \times 8 \times \frac{\sqrt{3}/2}{1/2}}{2\left(1 - 2 \times \frac{1}{4}\right)}$	M1	2.1
	$=-24\sqrt{3}$	A1	2.2a
		(3)	
(6 marks)			
B1: Correct expression for $\frac{dy}{d\theta}$ seen or implied in any form e.g. $\frac{-3\cos\theta}{\sin^4\theta}$ M1: Obtains $\frac{dx}{d\theta} = k\cos 2\theta$ or $\alpha\cos^2\theta + \beta\sin^2\theta$ (from product rule on $\sin\theta\cos\theta$) and attempts $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$			
A1: Correct expression in any form.			
May see e.g. $\frac{-3\cos\theta}{2\sin^4\theta\cos2\theta}$, $-\frac{3}{4\sin^4\theta\cos\theta-2\sin^3\theta\tan\theta}$			
(b) M1: Reco	gnises the need to find the value of $\sin \theta$ or θ when $y = 8$ and uses the	y parame	ter to
establish its value. This should be correct work leading to $\sin \theta = \frac{1}{2}$ or e.g. $\theta = \frac{\pi}{6}$ or 30°.			
M1: Uses their value of $\sin \theta$ or θ in their $\frac{dy}{dx}$ from part (a) (working in exact form) in an attempt			
to obtain a	an exact value for $\frac{dy}{dx}$. May be implied by a correct exact answer.		
If no working is shown but an exact answer is given you may need to check that this follows their			
$\frac{\mathrm{d}y}{\mathrm{d}x}$.			
dx			
A1: Deduces the correct gradient			