Question	Scheme	Marks	AOs
1	For an attempt to solve Either $3-2x = 7 + x \Rightarrow x =$ or $2x-3 = 7 + x \Rightarrow x =$	M1	1.1b
	Either $x = -\frac{4}{3}$ or $x = 10$	A1	1.1b
	For an attempt to solve Both $3-2x=7+x \Rightarrow x=$ and $2x-3=7+x \Rightarrow x=$	dM1	1.1b
	For both $x = -\frac{4}{3}$ and $x = 10$ with no extra solutions	A1	1.1b
		(4)	
ALT	Alternative by squaring:		
	$(3-2x)^2 = (7+x)^2 \Longrightarrow 9-12x+4x^2 = 49+14x+x^2$	M1	1.1b
	$3x^2 - 26x - 40 = 0$	A1	1.1b
	$3x^{2} - 26x - 40 = 0$ $3x^{2} - 26x - 40 = 0 \implies x = \dots$	dM1	1.1b
	For both $x = -\frac{4}{3}$ and $x = 10$ with no extra solutions	A1	1.1b
			(4 marks)
Notes:			

Note this question requires working to be shown not just answers written down. But correct equations seen followed by the correct answers can score full marks.

M1: Attempts to solve either correct equation.

Allow equivalent equations e.g. $3-2x = -7 - x \Rightarrow x = ...$

A1: One correct solution. Allow exact equivalents for $-\frac{4}{3}$ e.g. $-1\frac{1}{3}$ or -1.3 but not e.g. -1.33

dM1: Attempts to solve both correct equations.

Allow equivalent equations e.g. $3-2x = -7 - x \Rightarrow x = ...$ Depends on the first method mark. A1: For both $x = -\frac{4}{3}$ and x = 10 with no extra solutions and neither clearly rejected but ignore any

attempts to find the y coordinates whether correct or otherwise and ignore reference to e.g. x = -7(from where y = 7 + x intersects the x-axis) or x = 1.5 (from finding the value of x at the vertex) as

"extras". Allow exact equivalents for $-\frac{4}{3}$ e.g. $-1\frac{1}{3}$ or -1.3 but not rounded e.g. -1.33

Isw if necessary e.g. ignore subsequent attempts to put the values in an inequality e.g. $-\frac{4}{3} < x < 10$ But if e.g. $x = -\frac{4}{3}$ is obtained and a candidate states $x = \left| -\frac{4}{3} \right|$ then score A0

Alternative solution via squaring

M1: Attempts to square both sides. Condone poor squaring e.g. $(3-2x)^2 = 9 \pm 4x^2$ or $9 \pm 2x^2$

A1: Correct quadratic equation $3x^2 - 26x - 40 = 0$. The "= 0" may be implied by their attempt to

solve. Terms must be collected but not necessarily all on one side so allow e.g. $3x^2 - 26x = 40$ dM1: Correct attempt to solve a 3 term quadratic. See general guidance for solving a quadratic equation. The roots can be written down from a calculator so the method may be implied by their values. Depends on the first method mark.

A1: For both $x = -\frac{4}{3}$ and x = 10 with no extra solutions and neither clearly rejected but ignore any attempts to find the *y* coordinates and do not count e.g. x = -7 (from where y = 7 + x intersects the *x*-axis) or x = 1.5 (from finding the value of *x* at the vertex) as "extras". Allow exact equivalents for $-\frac{4}{3}$ e.g. $-1\frac{1}{3}$ or -1.3 but not e.g. -1.33

Is wif necessary e.g. ignore subsequent attempts to put the values in an inequality e.g. $-\frac{4}{3} < x < 10$

But if e.g.
$$x = -\frac{4}{3}$$
 is obtained and a candidate states $x = \left|-\frac{4}{3}\right|$ then score A0