Question	Scheme	Marks	AOs
4	$\frac{2(x+h)^2-2x^2}{h}=\dots$	M1	2.1
	$\frac{2\left(x+h\right)^2 - 2x^2}{h} = \frac{4xh + 2h^2}{h}$	A1	1.1b
	$\frac{dy}{dx} = \lim_{h \to 0} \frac{4xh + 2h^2}{h} = \lim_{h \to 0} (4x + 2h) = 4x^*$	A1*	2.5
		(3)	
			(3 marks)
Notes:			

Throughout the question allow the use of δx for *h* or any other letter e.g. α if used consistently. If δx is used then you can condone e.g. $\delta^2 x$ for δx^2 as well as condoning e.g. poorly formed δ 's

M1: Begins the process by writing down the gradient of the chord and attempts to expand the correct bracket – you can condone "poor" squaring e.g. $(x+h)^2 = x^2 + h^2$.

Note that
$$\frac{2(x-h)^2 - 2x^2}{-h} = \dots$$
 is also a possible approach.

A1: Reaches a correct fraction oe with the x^2 terms cancelled out.

E.g.
$$\frac{4xh+2h^2}{h}$$
, $\frac{2x^2+4xh+2h^2-2x^2}{h}$, $4x+2h$

A1*: Completes the process by applying a limiting argument and deduces that $\frac{dy}{dx} = 4x$ with no errors seen. The " $\frac{dy}{dx} =$ " doesn't have to appear but there must be something equivalent e.g. "f'(x) = " or "Gradient =" which can appear anywhere in their working. If f'(x) is used then there is no requirement to see f(x) defined first. Condone e.g. $\frac{dy}{dx} \rightarrow 4x$ or f'(x) $\rightarrow 4x$. Condone missing brackets so allow e.g. $\frac{dy}{dx} = \lim_{h \to 0} \frac{4xh + 2h^2}{h} = \lim_{h \to 0} 4x + 2h = 4x$ Do not allow h = 0 if there is never a reference to $h \rightarrow 0$

e.g.
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{4xh + 2h^2}{h} = \lim_{h \to 0} 4x + 2(0) = 4x$$
 is acceptable
but e.g.
$$\frac{dy}{dx} = \frac{4xh + 2h^2}{h} = 4x + 2h = 4x + 2(0) = 4x$$
 is not if there is no h $\rightarrow 0$ seen.

The $h \rightarrow 0$ does not need to be present throughout the proof e.g. on every line.

They must reach 4x + 2h at the end and not $\frac{4xh + 2h^2}{h}$ (without the *h*'s cancelled) to complete the limiting argument.