Question	Scheme	Marks	AOs
5(a)	States or uses $h = 1.5$	B1	1.1a
	Full attempt at the trapezium rule		
	$= \frac{\dots}{2} \left\{ 1.63 + 2.63 + 2 \times (2 + 2.26 + 2.46) \right\}$	M1	1.1b
	$=$ awrt 13.3 or $\frac{531}{40}$	A1	1.1b
		(3)	
(b)(i)	$\int_{3}^{9} \log_{3}(2x)^{10} dx = 10 \times "13.3" = \text{awrt} 133 \text{ or e.g.} \frac{531}{4}$	B1ft	2.2a
(ii)	$\int_{3}^{9} \log_{3} 18x dx = \int_{3}^{9} \log_{3} (9 \times 2x) dx = \int_{3}^{9} 2 + \log_{3} 2x dx$ $= \left[2x \right]_{3}^{9} + \int_{3}^{9} \log_{3} 2x dx = 18 - 6 + \int_{3}^{9} \log_{3} 2x dx = \dots$	M1	3.1a
	Awrt 25.3 or $\frac{1011}{40}$	A1ft	1.1b
		(3)	
			(6 marks)
Notes:			

(a)

B1: States or uses h = 1.5

M1: A full attempt at the trapezium rule.

Look for $\frac{\text{their } h}{2} \{ 1.63 + 2.63 + 2 \times (2 + 2.26 + 2.46) \}$ but condone copying slips

Note that $\frac{\text{their } h}{2} 1.63 + 2.63 + 2 \times (2 + 2.26 + 2.46)$ scores M0 unless the missing brackets are

recovered or implied by their answer. You may need to check.

Allow this mark if they add the areas of individual trapezia e.g.

$$\frac{\text{their }h}{2}\{1.63+2\} + \frac{\text{their }h}{2}\{2+2.26\} + \frac{\text{their }h}{2}\{2.26+2.46\} + \frac{\text{their }h}{2}\{2.46+2.63\}$$

Condone copying slips but must be a complete method using all the trapezia.

A1: awrt 13.3 (Note full accuracy is 13.275) or exact equivalent.

Note that the calculator answer is 13.324 so you must see correct working to award awrt 13.3 Use of h = -1.5 leading to a negative area can score B1M1A0 but allow full marks if then stated as positive.

(b)(i)

B1ft: Deduces that
$$\int_{3}^{9} \log_{3} (2x)^{10} dx = 10 \times "13.3" = a \text{ wrt } 133$$

FT on their 13.3 look for 3sf accuracy but follow through on e.g. their rounded answer to part (a) so if 13 was their answer to part (a) then allow 130 here **following a correct method**. A correct method must be seen here but a minimum is e.g. $10 \times "13.3" = "133"$

Note that $\int_{3}^{9} \log_3(2x)^{10} dx = 133.2414316...$ so a correct method must be seen to award marks.

Attempts to apply the trapezium rule again in any way score M0 as the instruction in the question was to use the <u>answer</u> to part (a).

(b)(ii)

M1: Shows correct log work to relate the given question to part (a)

Must reach as far as e.g. $[2x]_3^9 + \int_3^9 \log_3 2x \, dx = \dots$ with correct use of limits on $[2x]_3^9$ which

may be implied or equivalent work e.g. finds the area of the rectangle as 2×6

A1ft: Correct working followed by awrt 25.3 but ft on their 13.3 so allow for 12 + their answer to part (a) following correct work as shown.

Note that $\int_{3}^{9} \log_{3} 18x \, dx = 25.32414...$ so a correct method must be seen to award marks.

Some examples of an acceptable method are:

$$\int_{3}^{9} \log_{3} 18x \, dx = \int_{3}^{9} \log_{3} (9 \times 2x) \, dx = \int_{3}^{9} 2 + \log_{3} 2x \, dx = 6 \times 2 + "13.3" = 25.3$$

$$\int_{3}^{9} \log_{3} 18x \, dx = \int_{3}^{9} \log_{3} (9 \times 2x) \, dx = \int_{3}^{9} 2 + \log_{3} 2x \, dx = 12 + "13.3" = 25.3$$

$$\int_{3} \log_{3} 18x \, dx = \int_{3} \log_{3} (9 \times 2x) \, dx = \int_{3} 2 + \log_{3} 2x \, dx = [2x]_{3}^{9} + \int_{3} \log_{3} 2x \, dx = 25.3$$

BUT just 12+"13.3" = 25.3 scores M0

Attempts to apply the trapezium rule again in any way score M0 as the instruction in the question was to use the <u>answer</u> to part (a).