Question	Scheme	Marks	AOs
8	$y = \frac{(x-2)(x-4)}{4\sqrt{x}} = \frac{x^2 - 6x + 8}{4\sqrt{x}} = \frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$	M1 A1	1.1b 1.1b
	$\int \frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}dx = \frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}(+c)$	dM1 A1	3.1a 1.1b
	Deduces limits of integral are 2 and 4 and applies to their $\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$	M1	2.2a
	$\left(\frac{32}{10} - 8 + 8\right) - \left(\frac{2}{5}\sqrt{2} - 2\sqrt{2} + 4\sqrt{2}\right) = \frac{16}{5} - \frac{12}{5}\sqrt{2}$ Area $R = \frac{12}{5}\sqrt{2} - \frac{16}{5}\left(\text{ or } \frac{16}{5} - \frac{12}{5}\sqrt{2}\right)$	A1	2.1
		(6)	
			(6 marks)

M1: Correct attempt to write $\frac{(x-2)(x-4)}{4\sqrt{x}}$ as a sum of terms with indices.

Look for at least two different terms with the correct index e.g. two of $x^{\frac{3}{2}}$, $x^{\frac{1}{2}}$, $x^{-\frac{1}{2}}$ which have come from the correct places.

The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{-\frac{1}{2}}$ **A1**: $\frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$ which can be left unsimplified e.g. $\frac{1}{4}x^{2-\frac{1}{2}} - \frac{1}{2}x^{\frac{1}{2}} - x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$ or as e.g. $\frac{1}{4}\left(x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 8x^{-\frac{1}{2}}\right)$

The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{-\frac{1}{2}}$

dM1: Integrates $x^n \to x^{n+1}$ for at least 2 correct indices i.e. at least 2 of $x^{\frac{3}{2}} \to x^{\frac{5}{2}}$, $x^{\frac{1}{2}} \to x^{\frac{3}{2}}$, $x^{\frac{1}{2}} \to x^{\frac{1}{2}}$

It is dependent upon the first M so at least two terms must have had a correct index.

A1:
$$\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}(+c)$$
. Allow unsimplified e.g. $\frac{1}{4} \times \frac{2}{5}x^{\frac{3}{2}+1} - \frac{1}{2} \times \frac{2}{3}x^{\frac{1}{2}+1} - \frac{2}{3}x^{\frac{1}{2}+1} + 2 \times 2x^{\frac{1}{2}}$
or as e.g. $\frac{1}{4}\left(\frac{2}{5}x^{\frac{5}{2}} - 4x^{\frac{3}{2}} + 16x^{\frac{1}{2}}\right)(+c)$.

M1: Substitutes the limits 4 and 2 to their $\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$ and subtracts either way round.

There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone
$$\frac{1}{10} \times 4^{\frac{5}{2}} - 4^{\frac{3}{2}} + 4 \times 4^{\frac{1}{2}} - \frac{1}{10} \times 2^{\frac{5}{2}} - 2^{\frac{3}{2}} + 4 \times 2^{\frac{1}{2}}$$

This is an independent mark but the limits must be applied to an expression that is not y so they may even have differentiated.

A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents

Award this mark once one of these forms is reached and isw

See overleaf for integration by parts and integration by substitution.

Integration by parts:

$$\int \frac{(x-2)(x-4)}{4\sqrt{x}} dx = \int \frac{1}{4} (x-2)(x-4)x^{-\frac{1}{2}} dx = \frac{1}{2} (x-2)(x-4)x^{\frac{1}{2}} - \int \frac{1}{2} (2x-6)x^{\frac{1}{2}} dx \qquad M1 \qquad 1.1b \\ A1 \qquad$$

Notes:

M1: Applies integration by parts and reaches the form $\alpha (x-2)(x-4)x^{\frac{1}{2}} \pm \int (px+q)x^{\frac{1}{2}} dx \alpha, p \neq 0$

oe e.g.
$$\alpha \left(x^2 - 6x + 8\right) x^{\frac{1}{2}} \pm \int (px+q) x^{\frac{1}{2}} dx \alpha, p \neq 0$$

A1: Correct first application of parts in any form

dM1: Attempts their $\int (px+q)x^{\frac{1}{2}} dx$ by expanding and integrating or may attempt parts again.

E.g.
$$\int (2x-6)x^{\frac{1}{2}} dx = \int \left(2x^{\frac{3}{2}}-6x^{\frac{1}{2}}\right) dx = \dots$$
 or e.g. $\int (2x-6)x^{\frac{1}{2}} dx = \frac{2}{3}x^{\frac{3}{2}}(2x-6)-\frac{4}{3}\int x^{\frac{3}{2}} dx$

If they expand then at least one term requires $x^n \to x^{n+1}$ or if parts is attempted again, the structure must be correct.

A1: Fully correct integration in any form

M1: Substitutes the limits 4 and 2 to their $=\frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}}-\frac{2}{5}x^{\frac{5}{2}}+2x^{\frac{3}{2}}$ and subtracts

either way round. There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone $0 - \frac{16}{3} + \frac{128}{15} - 0 + \frac{4}{3}\sqrt{2} + \frac{16}{15}\sqrt{2}$

This is an independent mark but the limits must be applied to a "changed" function.

A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents

Attempts at integration by parts "the other way round" should be sent to review.

Integration by substitution example:

$$u = \sqrt{x} \left(x = u^{2} \right) \Rightarrow \int \frac{(x-2)(x-4)}{4\sqrt{x}} dx = \int \frac{(u^{2}-2)(u^{2}-4)}{4u} \frac{dx}{du} du$$

$$= \int \frac{(u^{2}-2)(u^{2}-4)}{4u} 2u du$$

$$M1 \qquad 1.1b$$

$$A1 \qquad 2.1c$$

Notes:

M1: Applies the substitution e.g.
$$u = \sqrt{x}$$
 and attempts $k \int \frac{\left(u^2 - 2\right)\left(u^2 - 4\right)}{u} \frac{dx}{du} du$

A1: Fully correct integral in terms of *u* in any form e.g. $\frac{1}{2} \int (u^2 - 2)(u^2 - 4) du$

dM1: Expands the bracket and integrates $u^n \to u^{n+1}$ for at least 2 correct indices i.e. at least 2 of $u^4 \to u^5$, $u^2 \to u^3$, $k \to ku$

A1: $\frac{1}{2}\left(\frac{u^5}{5} - \frac{6u^3}{3} + 8u\right)(+c)$. Allow unsimplified.

M1: Substitutes the limits 2 and $\sqrt{2}$ to their $\frac{1}{2}\left(\frac{u^5}{5} - \frac{6u^3}{3} + 8u\right)$ and subtracts either way round.

There is no requirement to evaluate but 2 and $\sqrt{2}$ must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone
$$\frac{1}{2} \left(\frac{32}{5} - 16 + 16 - \frac{4\sqrt{2}}{5} - 4\sqrt{2} + 8\sqrt{2} \right)$$

Alternatively reverses the substitution and applies the limits 4 and 2 with the same conditions. A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents

Award this mark once one of these forms is reached and isw.

There may be other substitutions seen and the same marking principles apply.