Question	Scheme	Marks	AOs
9(a)	Deduces that $A = \pm 50$ or $b = \frac{1}{4}$	B1	3.4
	Deduces that $A = \pm 50$ and $b = \frac{1}{4}$	B1	3.4
	Uses $t = 0, H = 1 \Rightarrow \alpha = \dots$ E.g. $1 = "50" \sin(\alpha)^{\circ} \Rightarrow \alpha = \dots$	M1	3.4
	$H = \left \pm 50 \sin\left(\frac{1}{4}t + 1.15\right)^{\circ} \right $	A1	3.3
		(4)	
(b)	E.g. the minimum height above the ground of the passenger on the original model was 0 m or Adding "d" means the passenger does not touch the ground.	B1	3.5b
		(1)	
			(5 marks)
Notes:			

(a) Note that B0B1 is not possible

B1: Uses the equation of the given model to deduce that $A = \pm 50$ or $b = \frac{1}{4}$ o.e.

May be seen embedded within their equation.

B1: Uses the equation of the given model to deduce that $A = \pm 50$ and $b = \frac{1}{4}$ o.e.

May be seen embedded within their equation.

M1: Uses t = 0 and H = 1 in the equation of the model to find a value for α . Follow through on their value for A. Allow for $\pm 1 = "50"\sin(\alpha)^\circ \Rightarrow \alpha = ...$ where α is in degrees or radians.

Note that in radians $\sin^{-1}\left(\frac{1}{50}\right) \approx \frac{1}{50}$ (0.0200...) which may appear incorrect but is in fact ok.

Also in degrees a value of e.g. 1.14 (truncated) would indicate the method.

A1: Writes down the correct full equation of the model: $H = \left\| \pm 50 \sin\left(\frac{1}{4}t + 1.15\right)^{\circ} \right\|$ o.e.

Condone omission of degrees symbol and allow awrt 1.15 for α .

Allow if a correct equation is seen anywhere in their solution.

(b)

B1: Gives a suitable explanation with no contradictory statements.

Condone "so that pod/capsule/seat/passenger/ferris wheel/it etc. will not hit/touch the ground" Responses that focus on the starting point of the model are likely to score B0