Question	Scheme	Marks	AOs
11	$n(n^2+5)$		
	Attempts even or odd numbers		
	Sets $n = 2k$ or $n = 2k \pm 1$ oe and attempts $n(n^2 + 5)$	M1	3.1a
	Achieves $2k(4k^2+5)$ (for $n=2k$) and states "even"		
	Or achieves $(2k+1)(4k^2+4k+6) = 2(2k+1)(2k^2+2k+3)$		
	(for $n = 2k + 1$) and states "even" Or e.g.	A1	2.2a
	achieves $(2k-1)(4k^2-4k+6) = 2(2k-1)(2k^2-2k+3)$		
	(for $n = 2k - 1$) and states "even"		
	Attempts even and odd numbers		
	Sets $n = 2k$ and $n = 2k \pm 1$ oe and attempts $n(n^2 + 5)$	dM1	2.1
	Achieves $2k(4k^2+5)$ (for $n=2k$) and states "even"		
	and achieves $(2k \pm 1)(4k^2 \pm 4k + 6) = 2(2k \pm 1)(2k^2 \pm 2k + 3)$		
	(for $n = 2k \pm 1$) and states "even"	A1	2.4
	Correct work and states even for both WITH a final		
	conclusion showing that true for all $n \in \mathbb{N}$ or e.g. true for all		
	even and odd numbers.		
		(4)	
			(4 marks)

M1: For the key step attempting to find $n(n^2 + 5)$ when n = 2k or $n = 2k \pm 1$ or equivalent representation of odd or even e.g. n = 2k + 2 or $n = 2k \pm 7$ Condone the use of e.g. n = 2n and $n = 2n \pm 1$

A1: Achieves $2k(4k^2+5)$ or e.g. $2(4k^3+5k)$ and deduces that this is even at the appropriate time. Or achieves $(2k \pm 1)(4k^2 \pm 4k + 6) = 2(2k \pm 1)(2k^2 \pm 2k + 3)$ oe e.g. $2(4k^3 + 6k^2 + 8k + 3)$ and deduces that this is even. Note that if the bracket is expanded to e.g. $8k^3 + 12k^2 + 16k + 6$ then stating "even" is insufficient – they would need to say e.g. even + even + even + even = even or equivalent

Note it is also acceptable to use a divisibility argument e.g. $\frac{8k^3 + 10k}{2} = 4k^3 + 5k$ so $8k^3 + 10k$ must be even.

There should be no errors in the algebra but allow e.g. invisible brackets if they are "recovered". **dM1**: Attempts $n(n^2 + 5)$ when n = 2k and $n = 2k \pm 1$ or equivalent representation of odd or even e.g. n = 2k + 2 and $n = 2k \pm 7$

A1: Correct work and states even for both WITH a final conclusion e.g. so true for all $n \in \mathbb{N}$.

There should be no errors in the algebra but allow e.g. invisible brackets if they are "recovered".

A "solution" via just logic.

E.g.

If *n* is odd, then
$$n(n^2 + 5)$$
 is odd×(odd + odd) = odd × even = even

If *n* is even, then $n(n^2 + 5)$ is even×(even + odd) = even × odd = even

Both cases must be considered to score any marks and scores SC 1010 if fully correct **OR**

E.g.
$$n(n^2+5) = n^3+5n$$

If *n* is odd, then n^3 is odd and 5n is odd, so $n^3 + 5n$ is odd + odd = even If *n* is even, then n^3 is even and 5n is even, so $n^3 + 5n$ is even + even = even Both cases must be considered to score any marks and scores SC 1010 if fully correct

.....

A solution via contradiction.

- M1 A1: There exists a number *n* such that $n(n^2 + 5)$ is odd, and so deduces that both *n* and $n^2 + 5$ are odd. Note that M1A0 is not possible via this method.
- **dM1**: Sets $n^2 + 5 = 2k + 1$ (for some integer k) $\Rightarrow n^2 = 2k 4 = 2(k 2)$ which is even Must use algebra here for this approach and not a "logic" argument.
- A1: States that "this is a contradiction as if n^2 is even, then *n* is even" and then concludes so " $n(n^2+5)$ is even for all *n*. "

Attempts at proof by induction should be sent to review