Question	Scheme	Marks	AOs
12(a)	$\begin{gathered} \mathrm{f}(x)=\frac{\mathrm{e}^{3 x}}{4 x^{2}+k} \Rightarrow \mathrm{f}^{\prime}(x)=\frac{\left(4 x^{2}+k\right) 3 \mathrm{e}^{3 x}-8 x \mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)^{2}} \\ \mathrm{f}(x)=\mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-1} \Rightarrow \mathrm{f}^{\prime}(x)=3 \mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-1}-8 x \mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-2} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { 1.1b } \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\mathrm{f}^{\prime}(x)=\frac{\left(12 x^{2}-8 x+3 k\right) \mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)^{2}}$	A1	2.1
		(3)	
(b)	If $y=\mathrm{f}(x)$ has at least one stationary point then $12 x^{2}-8 x+3 k=0$ has at least one root	B1	2.2a
	Applies $b^{2}-4 a c(\geqslant) 0$ with $a=12, b=-8, c=3 k$	M1	2.1
	$0<k \leqslant \frac{4}{9}$	A1	1.1b
		(3)	

(6 marks)

Notes:

(a)

M1: Attempts the quotient rule to obtain an expression of the form $\frac{\alpha\left(4 x^{2}+k\right) \mathrm{e}^{3 x}-\beta x \mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)^{2}}, \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} 0$
condoning bracketing errors/omissions as long as the intention is clear. If the quotient rule formula is quoted it must be correct.
Condone e.g. $\mathrm{f}^{\prime}(x)=\frac{\left(4 x^{2}+k\right) 3 \mathrm{e}^{3 x}-8 x \mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)}$ provided an incorrect formula is not quoted.
May also see product rule applied to $\mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-1}$ to obtain an expression of the form $\alpha \mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-1}+\beta x \mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-2} \quad \alpha, \beta 0<0 \quad$ condoning bracketing errors/omissions as long as the intention is clear. If the product rule formula is quoted it must be correct.

A1: Correct differentiation in any form with correct bracketing which may be implied by subsequent work.
A1: Obtains $\mathrm{f}^{\prime}(x)=\left(12 x^{2}-8 x+3 k\right) \mathrm{g}(x)$ where $\mathrm{g}(x)=\frac{\mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)^{2}}$ or equivalent e.g. $g(x)=\mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-2}$

Allow recovery from "invisible" brackets earlier and apply isw here once a correct answer is seen.
Note that the complete form of the answer is not given so allow candidates to go from e.g.
$\frac{\left(4 x^{2}+k\right) 3 \mathrm{e}^{3 x}-8 x \mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)^{2}}$ or $3 \mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-1}-8 x \mathrm{e}^{3 x}\left(4 x^{2}+k\right)^{-2}$ to $\frac{\left(12 x^{2}-8 x+3 k\right) \mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)^{2}}$ for the final mark.

The " $\mathrm{f}^{\prime}(x)=$ " must appear at some point but allow e.g." $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ "
(b) Note that B0M1A1 is not possible in (b)

B1: Deduces that if $y=\mathrm{f}(x)$ has at least one stationary point then $12 x^{2}-8 x+3 k=0$ has at least one root. There is no requirement to formally state $\frac{\mathrm{e}^{3 x}}{\left(4 x^{2}+k\right)^{2}}>0$ This may be implied by an attempt at $b^{2}-4 a c \geqslant 0$ or $b^{2}-4 a c>0$ condoning slips.
M1: Attempts $b^{2}-4 a c \ldots 0$ with $a=12, b=-8, c=3 k$ where \ldots is e.g. " $=$ ", $<,>$, etc.
Alternatively attempts to complete the square and sets rhs ... 0
E.g. $12 x^{2}-8 x+3 k=0 \Rightarrow x^{2}-\frac{2}{3} x+\frac{1}{4} k=0 \Rightarrow\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}-\frac{1}{4} k$ leading to $\frac{1}{9}-\frac{1}{4} k \geqslant 0$

A1: $0<k \leqslant \frac{4}{9}$ but condone $k \leqslant \frac{4}{9}$ and condone $0 \leqslant k \leqslant \frac{4}{9}$
Must be in terms of k not x so do not allow e.g. $0<x \leqslant \frac{4}{9}$ but condone $\left(0, \frac{4}{9}\right]$ or $\left[0, \frac{4}{9}\right]$

