Question	Scheme	Marks	AOs
15(a)	Uses the common ratio $\frac{5+2\sin\theta}{12\cos\theta} = \frac{6\tan\theta}{5+2\sin\theta}$ o.e.	M1	3.1a
	Cross multiplies and uses $\tan \theta \times \cos \theta = \sin \theta$ $(5 + 2\sin \theta)^2 = 6 \times 12\sin \theta$	dM1	1.1b
	Proceeds to given answer $\frac{25 + 20\sin\theta + 4\sin^2\theta = 72\sin\theta}{\Rightarrow 4\sin^2\theta - 52\sin\theta + 25 = 0} $ *	A1*	2.1
		(3)	-
(a) Alt	(a) Alternative example:		
	Uses the common ratio $12r\cos\theta = 5 + 2\sin\theta$, $12r^2\cos\theta = 6\tan\theta$ $\Rightarrow 12\cos\theta \left(\frac{5+2\sin\theta}{12\cos\theta}\right)^2 = 6\tan\theta$	M1	3.1a
	Multiplies up and uses $\tan \theta \times \cos \theta = \sin \theta$ $(5 + 2\sin \theta)^2 = 6\tan \theta \times 12\cos \theta = 72\sin \theta$	dM1	1.11
	Proceeds to given answer $25 + 20\sin\theta + 4\sin^2\theta = 72\sin\theta$ $\Rightarrow 4\sin^2\theta - 52\sin\theta + 25 = 0 *$	Al*	2.1
		(3)	
(b)	$4\sin^2\theta - 52\sin\theta + 25 = 0 \Longrightarrow \sin\theta = \frac{1}{2}\left(,\frac{25}{2}\right)$	M1	1.11
	$\theta = \frac{5\pi}{6}$	Al	1.2
		(2)	
(c)	Attempts a value for either <i>a</i> or <i>r</i> e.g. $a = 12\cos\theta = 12 \times -\frac{\sqrt{3}}{2}$ or $r = \frac{5+2\sin\theta}{12\cos\theta} = \frac{5+2\times\frac{1}{2}}{12\times-\frac{\sqrt{3}}{2}}$	M1	3.1a
	"a" = $-6\sqrt{3}$ and "r" = $-\frac{1}{\sqrt{3}}$ o.e.	Al	1.11
	Uses $S_{\infty} = \frac{a}{1-r} = \frac{-6\sqrt{3}}{1+\frac{1}{\sqrt{3}}}$	dM1	2.1
	Rationalises denominator $S_{\infty} = \frac{-6\sqrt{3}}{1 + \frac{1}{\sqrt{3}}} = \frac{-18}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$	ddM1	1.16
	$(S_{\infty} =)9(1-\sqrt{3})$	A1	2.1
	x w / x /	(5)	1.0
) mark

(a)

M1: For the key step in using the ratio of
$$\frac{a_2}{a_1} = \frac{a_3}{a_2}$$

dM1: Cross multiplies and uses $\tan \theta \times \cos \theta = \sin \theta$

A1*: Proceeds to the given answer including the "= 0" with no errors and sufficient working shown.

Alternative:

M1: Expresses the 2nd and 3rd terms in terms of the first term and the common ratio and eliminates "r"

dM1: Multiplies up and uses $\tan \theta \times \cos \theta = \sin \theta$

A1*: Proceeds to the given answer including the "= 0" with no errors and sufficient working shown.

Other approaches may be seen in (a) and can be marked in a similar way e.g. M1 for correctly obtaining an equation in θ using the GP, M1 for applying $\tan \theta \times \cos \theta = \sin \theta$ or equivalent and eliminating fractions, A1 as above

Example:
$$u_2 = \frac{u_1 \times u_3}{u_2} \Longrightarrow 5 + 2\sin\theta = \frac{12\cos\theta \times 6\tan\theta}{5 + 2\sin\theta}$$
 M1
 $\Rightarrow (5 + 2\sin\theta)^2 = 72\sin\theta$ dM1
 $25 + 20\sin\theta + 4\sin^2\theta = 72\sin\theta$
 $\Rightarrow 4\sin^2\theta - 52\sin\theta + 25 = 0$ *

(b)

M1: Attempts to solve $4\sin^2 \theta - 52\sin\theta + 25 = 0$. Must be clear they have found $\sin \theta$ and not e.g. just x from $4x^2 - 52x + 25 = 0$. Working does not need to be seen but see general guidance for solving a 3TQ if necessary. Note that the $\frac{25}{2}$ does not need to be seen.

A1: $\theta = \frac{5\pi}{6}$ and no other values unless they are rejected or the $\frac{5\pi}{6}$ clearly selected here and not in (c)

A minimum requirement in (b) is e.g. $\sin \theta = \frac{1}{2}$, $\theta = \frac{5\pi}{6}$

Do **not** allow 150° for $\frac{5\pi}{6}$

PTO for the notes to part (c)

(c) Allow full marks in (c) if e.g. $\theta = \frac{\pi}{6}$ is their answer to (b) but $\theta = \frac{5\pi}{6}$ is used here.

or if e.g. $\theta = \frac{5\pi}{6}$ is their answer to (b) but $\theta = \frac{\pi}{6}$ is used here allow the M marks only. M1: For attempting a value (exact or decimal) for either *a* or *r* using **their** θ

E.g.
$$a = 12\cos\theta = \left(12 \times -\frac{\sqrt{3}}{2}\right)$$
 or $r = \frac{5+2\sin\theta}{12\cos\theta} = \left(\frac{5+2\times\frac{1}{2}}{12\times-\frac{\sqrt{3}}{2}}\right)$ or e.g. $r = \frac{6\tan\theta}{5+2\sin\theta} = \left(\frac{6\times-\frac{1}{\sqrt{3}}}{5+2\times\frac{1}{2}}\right)$

A1: Finds both $a = -6\sqrt{3}$ and $r = -\frac{1}{\sqrt{3}}$ which can be left unsimplified but $\sin \theta = \frac{1}{2}, \cos \theta = -\frac{\sqrt{3}}{2}$ and $\tan \theta = -\frac{\sqrt{3}}{3}$ (if required) must have been used.

dM1: Uses both values of "*a*" and "*r*" with the equation $S_{\infty} = \frac{a}{1-r} = \frac{-6\sqrt{3}}{1+\frac{1}{\sqrt{3}}}$ to create an expression

involving surds where *a* and *r* have come from appropriate work and |r| < 1Depends on the first method mark.

ddM1: Rationalises denominator. The denominator must be of the form $p \pm q\sqrt{3}$ oe e.g. $p + \frac{q}{\sqrt{3}}$

Depends on both previous method marks.

Note that stating e.g.
$$\frac{k}{p+q\sqrt{3}} \times \frac{p-q\sqrt{3}}{p-q\sqrt{3}}$$
 or $\frac{k}{p+\frac{q}{\sqrt{3}}} \times \frac{p-\frac{q}{\sqrt{3}}}{p-\frac{q}{\sqrt{3}}}$ is sufficient.

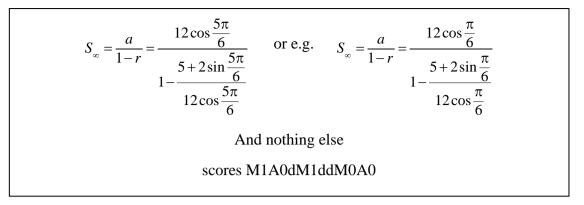
A1: Obtains $(S_{\infty} =)9(1-\sqrt{3})$

Note that full marks are available in (c) for the use of $\theta = 150^{\circ}$ Note also that marks may be implied in (c) by e.g.

$$S_{\infty} = \frac{a}{1-r} = \frac{12\cos\theta}{1-\frac{5+2\sin\theta}{12\cos\theta}} = \frac{144\cos^2\theta}{12\cos\theta-5-2\sin\theta} = \frac{144\cos^2\frac{5\pi}{6}}{12\cos\frac{5\pi}{6}-5-2\sin\frac{5\pi}{6}}$$
$$= \frac{108}{-6-6\sqrt{3}} = \frac{108}{-6-6\sqrt{3}} \times \frac{-6+6\sqrt{3}}{-6+6\sqrt{3}} = \frac{-648+648\sqrt{3}}{-72} = 9(1-\sqrt{3})$$

Scores M1A1 implied dM1 ddM1 A1

See next page for some other cases in (c) and how to mark them:



$$S_{\infty} = \frac{a}{1-r} = \frac{12\cos\frac{5\pi}{6}}{1-\frac{5+2\sin\frac{5\pi}{6}}{12\cos\frac{5\pi}{6}}} = 9\left(1-\sqrt{3}\right)$$

Scores M1A1dM1ddM0A0

$$S_{\infty} = \frac{a}{1-r} = \frac{12\cos\frac{\pi}{6}}{1-\frac{5+2\sin\frac{\pi}{6}}{12\cos\frac{\pi}{6}}} = 9(1+\sqrt{3})$$

Scores M1A0dM1ddM0A0

 $S_{\infty} = 9(1-\sqrt{3})$ with no working scores no marks