

Figure 4

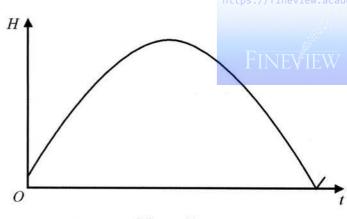


Figure 5

Figure 4 shows a sketch of a Ferris wheel.

The height above the ground, Hm, of a passenger on the Ferris wheel, t seconds after the wheel starts turning, is modelled by the equation

$$H = |A\sin(bt + \alpha)^{\circ}|$$

where A, b and α are constants.

Figure 5 shows a sketch of the graph of H against t, for one revolution of the wheel.

Given that

- the maximum height of the passenger above the ground is 50 m
- the passenger is 1 m above the ground when the wheel starts turning
- the wheel takes 720 seconds to complete one revolution
- (a) find a complete equation for the model, giving the exact value of A, the exact value of b and the value of α to 3 significant figures.
- (b) Explain why an equation of the form

(1)

$$H = |A\sin(bt + \alpha)^{\circ}| + d$$

where d is a positive constant, would be a more appropriate model.

a maximum |sin| = 1, so maximum H = A(1) = A=50 (1 mark)

Isial goes from O back to O in 180°, so 720b = 180 = b = 4 (1 mark)

$$H = 1$$
 when $t = 0$, $1 = |50\sin(0+\alpha)| \Rightarrow \alpha = \sin^2(\frac{1}{50}) = 1.1459...$
(8'ven) = 1.15 3sf (Imark)

$$H = |50\sin(\pm t + 1.15)^{\circ}|$$
 (Imark)