Question	Scheme	Marks	AOs
6(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + 2bx + 12$	M1	1.1b
(::)		A1	1.1b
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6ax + 2b$	A1ft	1.1b
		(3)	
(b)	$\frac{13}{2} = a\left(\frac{3}{2}\right)^3 + b\left(\frac{3}{2}\right)^2 + 12\left(\frac{3}{2}\right) + 2, 6a\left(\frac{3}{2}\right) + 2b = 0$ $\Rightarrow a = \dots, b = \dots$	M1	3.1a
	a = 2, b = -9	A1	1.1b
	u 2, 0)	(2)	1.10
(c)	$\left(\frac{d^2y}{dx^2}\right)_{x=1} = 12(1) - 18, \left(\frac{d^2y}{dx^2}\right)_{x=2} = 12(2) - 18$		
	$\left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)_{\left(x=\frac{3}{2}\right)} = 12$	M1	2.1
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_{x=1} < 0, \qquad \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_{x=2} > 0$ or		
	$\left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)_{\left(x=\frac{3}{2}\right)} \neq 0$	A1	2.2a
	Hence point of inflection		
		(2)	
(7 marks			marks)
Notes			
(a)(i) M1: For $x^n \to x^{n-1}$			
A1: Correct expression			
(ii)			
A1ft: Correct expression (follow through their first derivative) (b)			
M1: Substitutes the coordinates of P into the equation of the curve and substitutes $x = 1.5$ into			
their second derivative and sets = 0 and then solves 2 equations in a and b .			
A1: Correct values (c)			
M1: Attempts to find the value of the second derivative either side of $x = 1.5$ or attempts the third			
derivative.			
A1: Correct work with a suitable conclusion e.g. the second derivative changes sign either side of $x = 1.5$ or the third derivative is non-zero at $x = 1.5$			