Question	Scheme	Marks	AOs
9(a)	$x=\frac{7}{3}$	B1	2.2a
		(1)	
(b)	$x = 2 \Longrightarrow 7 - 3x = 7 - 6 = 1, -2x^2 + 14x - 19 = 1$	B1	2.1
	So the <i>x</i> coordinate of <i>A</i> is 2	(1)	
(c)	At <i>B</i> $3x-7 = -2x^2 + 14x - 19 \Longrightarrow 2x^2 - 11x + 12 = 0 \Longrightarrow x =$	(1) M1	3.1a
(0)	$2x^{2} - 11x + 12 = 0 \Longrightarrow x = 4$	A1	1.1b
	$\Rightarrow y = 5$	Al	1.1b
		(3)	
(d)	$\int \left(-2x^2 + 14x - 19\right) dx = -\frac{2x^3}{3} + 7x^2 - 19x(+c)$	M1 A1	1.1b 1.1b
	Area of triangles: $\frac{1}{2}\left(\frac{7}{3}-2\right) \times 1 + \frac{1}{2}\left(4-\frac{7}{3}\right) \times 5 \left(=\frac{13}{3}\right)$	M1	2.1
	Area of R is:		
	$\left[-\frac{2x^3}{3}+7x^2-19x\right]_2^4-\frac{13}{3}=-\frac{128}{3}+112-76-\left(-\frac{16}{3}+28-38\right)-\frac{13}{3}$	ddM1	3.1a
	$=\frac{13}{3}$	A1	1.1b
		(5)	
	(d) Alternative:		
	$\int \left(-2x^2 + 14x - 19 - 7 + 3x\right) dx = -\frac{2x^3}{3} + 7x^2 - 19x - 7x + \frac{3x^2}{2}(+c)$ or	M1	1.1b
	$\int \left(-2x^2 + 14x - 19 + 7 - 3x\right) dx = -\frac{2x^3}{3} + 7x^2 - 19x + 7x - \frac{3x^2}{2}(+c)$	A1	1.1b
	$\left[-\frac{2x^{3}}{3}+7x^{2}-19x-7x+\frac{3x^{2}}{2}\right]_{2}^{\frac{7}{3}}$		
	or $\left[-\frac{2x^3}{3} + 7x^2 - 19x + 7x - \frac{3x^2}{2}\right]_{\frac{7}{3}}^4$	M1	2.1
	$\left[-\frac{2x^3}{3} + 7x^2 - 19x - 7x + \frac{3x^2}{2}\right]_2^{\frac{7}{3}} + \left[-\frac{2x^3}{3} + 7x^2 - 19x + 7x - \frac{3x^2}{2}\right]_{\frac{7}{3}}^4 = \dots$	ddM1	3.1a
	$=\frac{13}{3}$	A1	1.1b
		(5)	
(10 marks)			

```
Notes
```

```
(a)
M1: Deduces the correct value of x
(b)
B1: Substitutes x = 2 into both equations, obtains y = 1 both times and makes a conclusion.
(c)
M1: Correct strategy for B. E.g. attempts to solve 3x - 7 = -2x^2 + 14x - 19 and solves the resulting
3TQ
A1: For x = 4
A1: For y = 5
(d)
M1: For x^n \to x^{n+1} for the quadratic curve
A1: Correct integration
M1: For a complete attempt at the area of both triangles using their vertex coordinates and their A
and B
ddM1: For a correct overall strategy for the area of R. This requires an attempt at the area under
the curve between A and B with the subtraction of the area of the 2 triangles. Depends on both
previous M marks.
```

A1: Correct value

(d) Alternative:

M1: For $x^n \rightarrow x^{n+1}$ for either subtraction

A1: Correct integration for either part

M1: For a complete attempt at the area of one of the required areas

ddM1: For a correct overall strategy for the area of R. Depends on both previous method marks.

A1: Correct value