Question	Scheme	Marks	AOs
10	$x = t^2, \ y = 2t \Longrightarrow t^4 + 4t^2 = 10t^2 + k \Longrightarrow t^4 - 6t^2 - k = 0$		
	or		
	$y = 2t \Longrightarrow x = \frac{y^2}{4} \Longrightarrow \frac{y^4}{16} + y^2 = \frac{10y^2}{4} + k \Longrightarrow y^4 - 24y^2 - 16k = 0$	M1 A1	3.1a 1.1b
	or		
	$x = t^2 \Rightarrow y = 2\sqrt{x} \Rightarrow x^2 + 4x = 10x + k \Rightarrow x^2 - 6x - k = 0$		
	Roots must be real:		
	$b^2 - 4ac > 0 \Longrightarrow 6^2 + 4k > 0 \Longrightarrow k > -9$	dM1	3.1a
	or e.g.	A1	1.1b
	$b^2 - 4ac > 0 \Longrightarrow 24^2 + 64k > 0 \Longrightarrow k > -9$		
	Both roots must be positive so e.g.:	B1	2.2a
	$6 - \sqrt{36 + 4k} > 0 \Longrightarrow k < 0$	DI	2.2a
	$\{k: k < 0\} \cap \{k: k > -9\}$	A1	2.5
		(6)	
(6 marks)			
Notes			

M1: Makes the key step of using the Cartesian equation with the parametric equations to eliminate 2 of the variables

A1: Correct 3TQ in t^2 , y^2 or x

dM1: Recognises the condition that $b^2 - 4ac > 0$ as roots must be real and uses this to find the minimum value for *k*

A1: For k > -9 seen as part of their solution

B1: Deduces that as both roots must be positive, k < 0

A1: Correct range using the correct notation. Allow equivalents e.g. $\{k: -9 < k < 0\}, k \in (-9, 0)$