Question	Scheme	Marks	AOs
11	n = 3k + 1 or $n = 3k + 2n^2 - 1 =$	M1	3.1a
	$n = 3k + 1 \Rightarrow n^{2} - 1 = (3k + 1)^{2} - 1 = 9k^{2} + 6k + 1 - 1 = 3(3k^{2} + 2k)$ which is a multiple of 3 or $n = 3k + 2 \Rightarrow n^{2} - 1 = (3k + 2)^{2} - 1 = 9k^{2} + 12k + 4 - 1 = 3(3k^{2} + 4k + 1)$ which is a multiple of 3	A1	2.2a
	n = 3k + 1 and $n = 3k + 2n^2 - 1 =$	dM1	2.1
	$n = 3k + 1 \Rightarrow n^{2} - 1 = (3k + 1)^{2} - 1 = 9k^{2} + 6k + 1 - 1 = 3(3k^{2} + 2k)$ which is a multiple of 3 and $n = 3k + 2 \Rightarrow n^{2} - 1 = (3k + 2)^{2} - 1 = 9k^{2} + 12k + 4 - 1 = 3(3k^{2} + 4k + 1)$ which is a multiple of 3 So if n is a positive integer that is not divisible by 3 then $n^{2} - 1$ is divisible by 3	A1	2.4
		(4)	manka)
(4 marks) Notes			
M1: Sets $n = 3k + 1$ or $n = 3k + 2$ (or e.g. $n = 3k - 1$) and attempts $n^2 - 1$ or $(n-1)(n+1)$			
A1: Achieves e.g. $3(3k^2 + 2k)$ or $3(3k^2 + 4k + 1)$ oe and deduces that it is a multiple of 3			
dM1: A full and rigorous attempt at the proof considering both $n = 3k + 1$ and $n = 3k + 2$ oe valid expressions e.g. $n = 3k + 1$ and $n = 3k - 1$			

A1: Fully correct work with valid reasons and a final conclusion