Question	Scheme	Marks	AOs
1(a)	$\left\{\mathrm{f}^{\prime}(x)=\right\} \ldots x^{2}+\ldots x+\ldots \Rightarrow\left\{\mathrm{f}^{\prime \prime}(x)=\right\} \ldots x+\ldots$	M1	1.1 b
	$\left\{\mathrm{f}^{\prime}(x)=\right\} 3 x^{2}+4 x-8 \Rightarrow\left\{\mathrm{f}^{\prime \prime}(x)=\right\} 6 x+4$	A1cso	1.1 b
		$" 6 x+4 "=0 \Rightarrow x="-\frac{2}{3} "$	(2)
(b)(i)	$x, "-\frac{2}{3} "$ or $x<^{\prime \prime}-\frac{2}{3} "$	B1ft	1.1 b
		(2)	2.2 a

(4 marks)

Notes

(a)

M1: For attempting to differentiate twice.
It can be scored for any of: $x^{3} \rightarrow \ldots x^{2} \rightarrow \ldots x$ or $2 x^{2} \rightarrow \ldots x \rightarrow k$ or $-8 x \rightarrow k \rightarrow 0$ where \ldots are constants.
You can ignore the lhs so do not be concerned what they call the first and/or second derivative, just look for their expressions.
The indices do not need to be processed for this mark so allow for e.g. $x^{3} \rightarrow \ldots x^{3-1} \rightarrow \ldots x^{3-1-1}$
A1cso: $\left(\mathrm{f}^{\prime \prime}(x)=\right) 6 x+4$ Correct second derivative from fully correct work. The " $\mathrm{f}^{\prime}(x)="$ is not required.
Allow $6 x^{1}$ for $6 x$ but not $4 x^{0}$ for 4 unless the $4 x^{0}$ becomes 4 later, e.g. in part (b).
Do not apply isw so mark their final answer. E.g. if $6 x+4$ becomes $3 x+2$ score A0
(b)
(i)

B1ft: $a x+b=0 \Rightarrow(x=)-\frac{b}{a}$. This mark is for obtaining $x=-\frac{2}{3}$ or $x=-\frac{b}{a}$ which has come from solving an equation of the form $a x+b, a, b \neq 0$ where $a x+b$ is their attempt to differentiate twice in part (a) Allow equivalent fractions e.g. $x=-\frac{4}{6}$ or equivalents for their $x=-\frac{b}{a}$ or an exact decimal and isw.
(ii)

B1ft: Deduces x, $-\frac{2}{3}$ or follow through their single value of x from part (i) obtained from their attempt to solve an equation of the form $a x+b=0, a, b \neq 0$ where $a x+b$ was their attempt to differentiate twice in part (a). Do not isw and mark their final answer.
If 2 inequalities are given e.g. $x<"-\frac{2}{3} ", x>"-\frac{2}{3}$ without indicating which is their answer score B0 Condone $<$ for ," and allow equivalent inequalities e.g. $-\frac{2}{3}>x$
Allow equivalent fractions e.g. $x=-\frac{4}{6}$ or equivalents for their $x=-\frac{b}{a}$
Allow equivalent notation so these are all acceptable:

$$
x, "-\frac{2}{3} ", x<"-\frac{2}{3} ",\left(-\infty, "-\frac{2}{3} "\right],\left(-\infty, "-\frac{2}{3} "\right),\left\{x: x, "-\frac{2}{3} "\right\},\left\{x: x<"-\frac{2}{3} "\right\}
$$

Ignore any reference to values of y.
Allow ft decimal answers from (i) which may be inexact.
Correct answers in part (b) with no working in (a) can score 0011.

