Question	Scheme	Marks	AOs
1 (a)	${f'(x) =}x^2 +x + \Longrightarrow {f''(x) =}x +$	M1	1.1b
	${f'(x) =} 3x^2 + 4x - 8 \Longrightarrow {f''(x) =} 6x + 4$	A1cso	1.1b
		(2)	
(b)(i)	$"6x + 4" = 0 \Longrightarrow x = "-\frac{2}{3}"$	B1ft	1.1b
(ii)	$"6x + 4" = 0 \Longrightarrow x = "-\frac{2}{3}"$ x ,, "-\frac{2}{3}" or x < "-\frac{2}{3}"	B1ft	2.2a
		(2)	
			(4 marks)
Notes			
 M1: For attempting to differentiate twice. It can be scored for any of: x³ →x² →x or 2x² →x → k or -8x → k → 0 where are constants. You can ignore the lhs so do not be concerned what they call the first and/or second derivative, just look for their expressions. The indices do not need to be processed for this mark so allow for e.g. x³ →x³⁻¹ →x³⁻¹⁻¹ A1cso: (f''(x)=) 6x+4 Correct second derivative from fully correct work. The "f''(x)=" is not required. Allow 6x¹ for 6x but not 4x⁰ for 4 unless the 4x⁰ becomes 4 later, e.g. in part (b). Do not apply isw so mark their final answer. E.g. if 6x + 4 becomes 3x + 2 score A0 			
(b) (i) B1ft: $ax+b=0 \Rightarrow (x=)-\frac{b}{a}$. This mark is for obtaining $x=-\frac{2}{3}$ or $x=-\frac{b}{a}$ which has come from solving an equation of the form $ax+b$, $a,b \neq 0$ where $ax+b$ is their attempt to differentiate twice in part (a)			
Allow equivalent fractions e.g. $x = -\frac{4}{6}$ or equivalents for their $x = -\frac{b}{a}$ or an exact decimal and isw.			
(ii) 2 fills of the field in			
B1ft: Deduces $x_{,,-\frac{2}{3}}$ or follow through their single value of x from part (i) obtained from their attempt to solve an equation of the form $ax + b = 0$, $a, b \neq 0$ where $ax + b$ was their attempt to differentiate twice in part (a). Do not isw and mark their final answer. If 2 inequalities are given e.g. $x < (-\frac{2}{3}), x > (-\frac{2}{3})$ without indicating which is their answer score B0			
Condone < for ,, and allow equivalent inequalities e.g. $-\frac{2}{3} > x$			
Allow equivalent fractions e.g. $x = -\frac{4}{6}$ or equivalents for their $x = -\frac{b}{a}$			
Allow equivalent notation so these are all acceptable: $x, "-\frac{2}{3}", x < "-\frac{2}{3}", (-\infty, "-\frac{2}{3}"), (-\infty, "-\frac{2}{3}"), \{x: x, "-\frac{2}{3}"\}, \{x: x < "-\frac{2}{3}"\}$			
Ignore any reference to values of y.			
Allow ft decimal answers from (i) which may be inexact. Correct answers in part (b) with no working in (a) can score 0011.			