Question	Scheme	Marks	AOs
	e.g. $\left(u_{2}=\right) 35+7 \cos \left(\frac{\pi}{2}\right)-5(-1)^{1}=40$ *	B1*	2.1
	$u_{3}=40+7 \cos \left(\frac{2 \pi}{2}\right)-5(-1)^{2}(=28)$ or $u_{4}=" 28 "+7 \cos \left(\frac{3 \pi}{2}\right)-5(-1)^{3}(=33)$	M1	1.1b
	$u_{3}=28$ and $u_{4}=33$	A1	1.1b
		(3)	
(b)(i)	($u_{5}=$) 35	B1	2.2a
(ii)	e.g. $\sum_{r=1}^{25} u_{r}=6(35+40+" 28 "+333 ")+35$	M1	3.1a
	$=851$	A1	1.1b
		(3)	

(6 marks)

Notes

(a)
(i)

B1*: Correct application of the formula with $n=1$ and proceeds correctly to achieve an answer of 40 with no errors. Note that e.g., $\left(u_{2}=\right) 35+7 \cos \left(\frac{35 \pi}{2}\right)-5(-1)^{35}=35+0+5=40$ scores B0
As a minimum need to see e.g. $\left(u_{2}=\right) 35+7 \cos \left(\frac{\pi}{2}\right)-5(-1)^{1}=40, \quad 35+0+5=40, \quad 35+5=40, \quad 35-5(-1)^{1}=40$
(ii)

M1: A correct attempt to use the formula to find a value for u_{3} or u_{4}
Look for $n=2$ substituted correctly into the given formula with $u_{2}=40$. May be implied by $u_{3}=28$
Or their calculated value of u_{3} used with $n=3$ substituted correctly into the given formula to find u_{4} Condone use of calculator in degree mode which gives $u_{3}=41.989 \ldots$ which may imply this mark if no working is shown. If there is no working and u_{3} is incorrect and u_{4} is correct score M0A0
A1: Both correct $u_{3}=28$ and $u_{4}=33$ If 28, 33 are listed then allow M1A1.
For both correct values only score M1A1
(b)(i)

B1: $\left(u_{5}=\right) 35$
(ii)

M1: Attempts a correct method to find $\sum_{r=1}^{25} u_{r}$
There are various ways e.g. attempts to add 35 to $6 \times$ the sum of their four values.
Some other examples are:
$\sum_{r=1}^{25} u_{r}=7 \times 35+6 \times 40+6 \times 288^{\prime \prime}+6 \times " 33 ", \sum_{r=1}^{25} u_{r}=7(35+40+" 28 "+" 33 ")-(40+" 28 "+" 33 ")$,
$\sum_{r=1}^{25} u_{r}=\frac{25}{4}(35+40+" 28 "+" 33 ")+1, \quad 2(35+40+" 28 "+" 33 ")=272,272 \times 3=816,816+35$
There may be other methods seen but the calculation must be correct for their values.
If there is no working, with incorrect u_{3} and/or u_{4} you will need to check if their answer implies a correct method using $6(35+40+$ " 28 "+" 33 ") +35
Attempts to use an AP/GP formula score M0
A1: 851 (Correct answer with no working scores both marks)

