Question	Scheme	Marks	AOs
4(a)	$(A=) 55$	B1	3.4
		(1)	
(b)	$\left\{\frac{\mathrm{d} H}{\mathrm{~d} t}=\right\}-A B \mathrm{e}^{-B t}$ or $\left\{\frac{\mathrm{d} H}{\mathrm{~d} t}=\right\}-" 55 " B \mathrm{e}^{-B t}$	M1	3.1b
	$-B \times 755 "=-7.5 \Rightarrow B=\ldots\left(\frac{3}{22}=\right.$ awrt 0.136$)$	M1	1.1b
	$H=55 \mathrm{e}^{-0.136 t}+30$	A1cso	3.3
		(3)	
(4 marks)			
Notes			
(a) B1: 55 only. Just look for this value e.g. " $A=$ " is not required. Ignore any "units" if given e.g. $55^{\circ} \mathrm{C}$ (b) M1: Differentiates to obtain an expression of the form $\pm A B \mathrm{e}^{-B t}$ which may have their A already substituted in so allow for $\pm A B \mathrm{e}^{-B t}$ or $\pm " 55^{\prime \prime} B \mathrm{e}^{-B t}$ M1: Substitutes $t=0$ and their A into their $\frac{\mathrm{d} H}{\mathrm{~d} t}$, sets $= \pm 7.5$ and proceeds to find a value for B which may be implied by $\frac{3}{22}$ or awrt 0.136 Their $\frac{\mathrm{d} H}{\mathrm{~d} t}$ must not be H. i.e. it must be a "changed" function. A1cso: Correct equation which follows fully correct work $H=55 \mathrm{e}^{-0.136 t}+30$ but condone $H=55 \mathrm{e}^{-\frac{3}{22} t}+30$ The final equation must be correct but you can ignore spurious notation within their solution such as integral signs and " $+c$ " which do not affect their solution. Marking guidance is as follows for particular cases in (b) Case 1: $\left\{\frac{\mathrm{d} H}{\mathrm{~d} t}=\right\}-" 55 " B \mathrm{e}^{-B t},-" 55 " B \mathrm{e}^{-B t}=7.5 \Rightarrow B=-0.136 \Rightarrow H=55 \mathrm{e}^{-0.136 t}+30$ scores M1M1A0 Error: it should be - 7.5 Case 2: $\left\{\frac{\mathrm{d} H}{\mathrm{~d} t}=\right\} " 55 " B \mathrm{e}^{-B t}, " 55 " B \mathrm{e}^{-B t}=-7.5 \Rightarrow B=-0.136 \Rightarrow H=55 \mathrm{e}^{-0.136 t}+30$ scores M1M1A0 Error: incorrect derivative Case 3: $\left\{\frac{\mathrm{d} H}{\mathrm{~d} t}=\right\} " 55 " B \mathrm{e}^{-B t}, " 55 " B \mathrm{e}^{-B t}=7.5 \Rightarrow B=0.136 \Rightarrow H=55 \mathrm{e}^{-0.136 t}+30$ scores M1M1A0 Error: incorrect derivative Case 4: $\left\{\frac{\mathrm{d} H}{\mathrm{~d} t}=\right\}-" 55 " B \mathrm{e}^{-B t}, " 55 " B=7.5 \Rightarrow B=0.136 \Rightarrow H=55 \mathrm{e}^{-0.136 t}+30$ scores M1M1A1 No errors			

