(b)

$\int\left(2 x^{3}-9 x^{2}+5 x+12\right) \mathrm{d} x \ldots x^{4} \pm \ldots x^{3} \pm \ldots x^{2} \pm \ldots x \pm \ldots$
$\frac{1}{2}(3)^{4}-3(3)^{3}+\frac{5}{2}(3)^{2}+12(3)+c=-10 \Rightarrow c=\ldots$
$(0,-28)$

M1	3.1 a
$\mathbf{d M 1}$	1.1 b
$\mathbf{A 1}$	2.2 a
$\mathbf{(3)}$	

(5 marks)

Notes

(a)

Mark (a) and (b) together
M1: Substitutes $x=3$ completely into the given derivative, sets $=0$ and solves for k.
e.g., $2(3)^{3}-9(3)^{2}+5(3)+k=0 \Rightarrow k=\ldots$

May be implied by e.g. $54-81+15+k=0 \Rightarrow k=\ldots$ with at least 2 correctly evaluated powers.
A1*: Obtains $k=12$ with no errors seen and sufficient working shown. As a minimum you would need to
see e.g., $2(3)^{3}-9(3)^{2}+5(3)+k=0 \Rightarrow-12+k=0 \Rightarrow k=12$ or $54-81+15+k=0 \Rightarrow k=12$ or $2 \times 27-9 \times 9+5(3)+k=0 \Rightarrow k=12$

But $2(3)^{3}-9(3)^{2}+5(3)+k=0 \Rightarrow k=12$ scores M1A0 for lack of working
Note that some are just writing the expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$, then write "sub in $x=3$ " but don't actually show 3 substituted in and then go on to write $-12+k=0$ leading to $k=12$ scores M0A0*.

Alternative:

M1: Substitutes $x=3$ and $k=12$ into the given derivative and attempts to evaluate
A1*: Correct work to obtain an answer of 0 with a (minimal) conclusion e.g., tick, hence proven etc.
As a minimum you would need to see e.g., $2(3)^{3}-9(3)^{2}+5(3)+12=54-81+15+12=0 \checkmark$
(b)

M1: Attempts to integrate. Evidence can be taken for integrating to obtain at least 2 from:

$$
2 x^{3} \rightarrow \ldots x^{4} \text { or }-9 x^{2} \rightarrow \ldots x^{3} \text { or } 5 x \rightarrow \ldots x^{2} \text { or } 12 \rightarrow \ldots x \text { where } \ldots \text { are constants }
$$

dM1: Substitutes $x=3$ into their integrated expression that includes a constant of integration, sets this equal to ± 10 and proceeds to find their constant. Depends on the previous mark.
If the substitution is not shown this mark may be implied by their value for c or by their equation e.g., $18+c= \pm 10$
A1: ($0,-28$) Condone -28 or $y=-28$ but not just $c=-28$. There must be no other values or points.
Condone ($-28,0$) following $y=-28$

Beware of circular arguments which avoid doing part (a) e.g.

Integration is used on the given derivative to give y in terms of x, k and c $(3,-10)$ is substituted to give $3 k+c=8$
Part (b) is then done first using $k=12$ to find $c=-28$

This is then substituted into $3 k+c=8$ to give $k=12$
This scores (a) M0A0 (b) M1dM1A1 (if -28 is identified as the intercept)

Alternative for part (a) using algebraic division:

$$
\begin{gathered}
2 x^{2}-3 x-4 \\
x - 3 \longdiv { 2 x ^ { 3 } - 9 x ^ { 2 } + 5 x + k } \\
\frac{2 x^{3}-6 x^{2}}{-3 x^{2}+5 x} \\
\frac{-3 x^{2}+9 x}{-4 x+k} \\
\frac{-4 x+12}{k-12}(\text { or } 0)
\end{gathered}
$$

leading to $k-12=0$ and then $k=12$.
M1: Attempts to divide the given cubic by $(x-3)$ and proceeds as far as a remainder set $=0$.
Requires at least $2 x^{2} \pm 3 x$.
A1*: Obtains $k=12$ with no errors seen and sufficient working. Their algebraic division needs to be correct but allow them to have either $k-12$ or 0 as their "remainder". If their remainder is given in their working as 0 they may proceed directly to $k=12$.

