	dx			
	$2xy \to 2y + 2x \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	1.1b	
	$3x^{2} + 2x\frac{dy}{dx} + 2y + 6y\frac{dy}{dx} = \dots \Rightarrow \frac{dy}{dx} = \dots$	M1	2.1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2y + 3x^2}{2x + 6y}$	A1	1.1b	
		(4)		
(b)	$dv = 2(5) + 3(-2)^2$			
	$\frac{dy}{dx} = -\frac{2(5) + 3(-2)^2}{2(-2) + 6(5)}$			
	or e.g.	M1	1.1b	
	$3(-2)^{2} + 2(-2)\frac{\mathrm{d}y}{\mathrm{d}x} + 2 \times 5 + 6 \times 5\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \dots \left(-\frac{11}{13}\right)$			
	$y - 5 = "\frac{13}{11}"(x+2)$	dM1	1.1b	
	13x - 11y + 81 = 0	A1	2.2a	
		(3)		
	Notes		(7 marks)	
() 411				
(a) Allow equivalent notation for the $\frac{dy}{dx}$ e.g. y'				
M1: Atter	mpts to differentiate $x^3 \rightarrowx^2$ and $3y^2 \rightarrowy \frac{dy}{dx}$ where are constants	S		
B1: Corre	ect application of the product rule on $2xy$: $2xy \rightarrow 2x \frac{dy}{dx} + 2y$			
Note that some candidates have a spurious $\frac{dy}{dx} =$ at the start (as their intention to differentiate) and this				
	e ignored for the first 2 marks	.,	•	
M1: For a valid attempt to make $\frac{dy}{dx}$ the subject, with exactly 2 different terms in $\frac{dy}{dx}$ coming from $3y^2$ and				
2xy. Look for $(\pm)\frac{dy}{dx} = \Rightarrow \frac{dy}{dx} =$ which may be implied by their working.				
Condone slips provided the intention is clear.				
For those candidates who had a spurious $\frac{dy}{dx} =$ at the start, they may incorporate this in their				
rearrangement in which case they will have 3 terms in $\frac{dy}{dx}$ and so score M0.				
If they ignore it, then this mark is available for the condition as described above.				
A1: $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$-\frac{2y+3x^2}{2x+6y}$ oe e.g. $\frac{dy}{dx} = \frac{-2y-3x^2}{2x+6y}$, $\frac{2y+3x^2}{-2x-6y}$ Isw once a correct expressi	ion is seen.		
	that it is sometimes unclear if the minus sign(s) is/are correctly placed and judgement. Evidence may be available in part (b) to help you decide if the section	•		

Scheme

 $x^3 \rightarrow ...x^2$ and $3y^2 \rightarrow ...y \frac{dy}{dx}$

Marks

M1

AOs

1.1b

Question

7(a)

expression.

M1: Substitutes $x = -2$ and $y = 5$ into	$\frac{dy}{dx} = " - \frac{2y + 3x^2}{2x + 6y}"$
They must have x's and y's in the	heir $\frac{dy}{dx}$ but condone slips in substitution provided the intention is clear

(b)

As a minimum look for at least one x and at least one y substituted correctly. Note that this mark may be implied by their value for $\frac{dy}{dx}$ and may be implied if, for example, they find the negative reciprocal or the reciprocal of " $-\frac{2y+3x^2}{2x+6y}$ " and then substitute x = -2 and y = 5

Alternatively, substitutes x = -2 and y = 5 into their attempt to differentiate and then rearranges to find a value or numerical expression for $\frac{dy}{dx}$

dM1: Attempts to find the equation of the normal using their gradient of the tangent and x = -2 and y = 5 correctly placed. Score for an expression of the form $(y-5) = \frac{13}{11}(x+2)$ or if they use y = mx + c they must proceed as far as c = ... Must be using the **negative reciprocal** of the tangent gradient.

they must proceed as far as c = ... Must be using the **negative reciprocal** of the tangent gradient. Note that $y-5=\frac{2x+6y}{2y+3x^2}(x+2)$ is not a correct method unless the gradient is evaluated first *before* expanding.

expanding. **A1:** 13x-11y+81=0 or any integer multiple of this equation including the "= 0", not just a, b, c given. e.g., 26x-22y+162=0 is likely if they don't cancel down their gradient.