Question	Scheme	Marks	AOs
7(a)	$x^{3} \rightarrow \ldots x^{2}$ and $3 y^{2} \rightarrow \ldots y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	M1	1.1b
	$2 x y \rightarrow 2 y+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1	1.1b
	$3 x^{2}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y+6 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$.	M1	2.1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2 y+3 x^{2}}{2 x+6 y}$	A1	1.1b
		(4)	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2(5)+3(-2)^{2}}{2(-2)+6(5)}$ or e.g. $3(-2)^{2}+2(-2) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 \times 5+6 \times 5 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots\left(-\frac{11}{13}\right)$	M1	1.1b
	$y-5=" \frac{13}{11} "(x+2)$	dM1	1.1b
	$13 x-11 y+81=0$	A1	2.2a
		(3)	
(7 marks)			
Notes			

Notes

(a) Allow equivalent notation for the $\frac{\mathrm{d} y}{\mathrm{~d} x}$ e.g. y^{\prime}

M1: Attempts to differentiate $x^{3} \rightarrow \ldots x^{2}$ and $3 y^{2} \rightarrow \ldots y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ where \ldots are constants
B1: Correct application of the product rule on $2 x y: 2 x y \rightarrow 2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y$
Note that some candidates have a spurious $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ at the start (as their intention to differentiate) and this can be ignored for the first 2 marks
M1: For a valid attempt to make $\frac{\mathrm{d} y}{\mathrm{~d} x}$ the subject, with exactly 2 different terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ coming from $3 y^{2}$ and 2xy. Look for $(\ldots \pm \ldots) \frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ which may be implied by their working.
Condone slips provided the intention is clear.
For those candidates who had a spurious $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ at the start, they may incorporate this in their rearrangement in which case they will have 3 terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and so score M0.
If they ignore it, then this mark is available for the condition as described above.
A1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2 y+3 x^{2}}{2 x+6 y}$ oe e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 y-3 x^{2}}{2 x+6 y}, \frac{2 y+3 x^{2}}{-2 x-6 y}$ Isw once a correct expression is seen.
Note that it is sometimes unclear if the minus sign(s) is/are correctly placed and you may have to use your judgement. Evidence may be available in part (b) to help you decide if they have the correct expression.

(b)

M1: Substitutes $x=-2$ and $y=5$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}="-\frac{2 y+3 x^{2}}{2 x+6 y}$ "
They must have x 's and y 's in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ but condone slips in substitution provided the intention is clear. As a minimum look for at least one x and at least one y substituted correctly.
Note that this mark may be implied by their value for $\frac{d y}{d x}$ and may be implied if, for example, they find the negative reciprocal or the reciprocal of " $-\frac{2 y+3 x^{2}}{2 x+6 y}$ " and then substitute $x=-2$ and $y=5$
Alternatively, substitutes $x=-2$ and $y=5$ into their attempt to differentiate and then rearranges to find a value or numerical expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
dM1: Attempts to find the equation of the normal using their gradient of the tangent and $x=-2$ and $y=5$ correctly placed. Score for an expression of the form $(y-5)=" \frac{13}{11} "(x+2)$ or if they use $y=m x+c$ they must proceed as far as $c=\ldots$ Must be using the negative reciprocal of the tangent gradient.
Note that $y-5=\frac{2 x+6 y}{2 y+3 x^{2}}(x+2)$ is not a correct method unless the gradient is evaluated first before expanding.
A1: $13 x-11 y+81=0$ or any integer multiple of this equation including the $"=0 "$, not just a, b, c given. e.g., $26 x-22 y+162=0$ is likely if they don't cancel down their gradient.

