Question	Scheme	Marks	AOs
8(a)	$R=\sqrt{2^{2}+8^{2}}=\sqrt{68}=2 \sqrt{17}$	B1	1.1 b
	$\begin{gathered} 2 \cos \theta+8 \sin \theta=R \cos \theta \cos \alpha+R \sin \theta \sin \alpha \\ 2=R \cos \alpha \quad 8=R \sin \alpha \\ \tan \alpha=\frac{8}{2} \Rightarrow \alpha=\ldots \end{gathered}$	M1	1.1b
	$\alpha=$ awrt 1.326	A1	2.2a
		(3)	
(b)(i)	$4.5 \times 2 \sqrt{17}{ }^{\prime \prime}$	M1	1.1b
	$9 \sqrt{17}$	A1	2.2a
(ii)	awrt 1.33	B1ft	2.2a
		(3)	

(6 marks)

Notes

(a)

B1: $R=2 \sqrt{17}$ or $\sqrt{68}$.
$\pm 2 \sqrt{17}$ or $\pm \sqrt{68}$ score B0
(Condone if this comes from e.g., $8=R \cos \alpha \quad 2=R \sin \alpha$)
Decimal answers score B 0 unless the exact value is seen then apply isw.
M1: Proceeds to a value for α from $\tan \alpha= \pm \frac{8}{2}, \cos \alpha= \pm \frac{2}{" \sqrt{68} "}, \sin \alpha= \pm \frac{8}{" \sqrt{68} "}$
May be implied by awrt 1.33 radians or 76 degrees
A1: awrt 1.326 for α. Apply isw if this is then subsequently rounded to e.g. 1.33
(b)(i)

M1: For a value of $\pm 4.5 \times$ their R or allow $\pm 4.5 R$ (with the letter R)
But not embedded in an expression e.g. $9 \sqrt{17} \cos (\theta-\alpha)$ unless extracted later.
Note that the sum may be found as $9 \cos x+36 \sin x$ with the maximum then found using calculus e.g. $S=9 \cos x+36 \sin x \Rightarrow \frac{\mathrm{~d} S}{\mathrm{~d} x}=-9 \sin x+36 \cos x=0 \Rightarrow \tan x=4 \Rightarrow \sin x=\frac{4}{\sqrt{17}}, \cos x=\frac{1}{\sqrt{17}}$
$\Rightarrow 9 \cos x+36 \sin x=9 \sqrt{17}$. This will score M1 once they reach $\pm 4.5 \times$ their R
May be implied by $9 \sqrt{17}$ or awrt 37.1 (which may come from a graphical method)
May also see e.g. $\operatorname{Max}(9 \cos x+36 \sin x)=\sqrt{9^{2}+36^{2}}=\ldots$
A1: $9 \sqrt{17}$ or exact equivalent e.g. $\sqrt{1377}, 4.5 \sqrt{68}, 4.5(2 \sqrt{17})$ and apply isw once a correct answer is seen
(ii)

B1ft: awrt 1.33 (or follow through on their α even if in degrees (76), no matter how accurate)

