Marks

9(a)
Way 1

$$
\begin{gathered}
\text { Scheme } \\
x=(t+3)^{2}-25 \\
\Rightarrow x+25=(t+3)^{2} \Rightarrow(x+25)^{\frac{1}{2}}=(t+3) \Rightarrow y=\ldots \\
y=6 \ln (x+25)^{\frac{1}{2}} \Rightarrow y=3 \ln (x+25)
\end{gathered}
$$Mark

M1

$$
1.1 \mathrm{~b}
$$

(a) Way 2

$y=6 \ln (t+3)=3 \ln (t+3)^{2}$
$y=3 \ln (t+3)^{2}=3 \ln \left(t^{2}+6 t+9\right)=3 \ln (x+16+9)$
$y=3 \ln (x+25)$
(a) Way 3

$$
\begin{gathered}
y=6 \ln (t+3) \Rightarrow \frac{y}{6}=\ln (t+3) \Rightarrow t+3=\mathrm{e}^{\frac{y}{6}} \Rightarrow t=\mathrm{e}^{\frac{y}{6}}-3 \\
x=\left(\mathrm{e}^{\frac{y}{6}}-3\right)^{2}+6\left(\mathrm{e}^{\frac{y}{6}}-3\right)-16 \Rightarrow y=\ldots
\end{gathered}
$$

or

$$
x=\left(\mathrm{e}^{\frac{y}{6}}-3+8\right)\left(\mathrm{e}^{\frac{y}{6}}-3-2\right) \Rightarrow y=\ldots
$$

$$
y=3 \ln (x+25)
$$

A1cso

(a) Way 4

$$
x=(t+3)^{2}-25
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{\left(\frac{6}{t+3}\right)}{2 t+6} \Rightarrow \frac{3}{(t+3)^{2}}=\frac{3}{x+25} \Rightarrow y=3 \ln (x+25)(+c)
$$

M1
e.g. $t=0 \Rightarrow x=-16, y=6 \ln 3 \Rightarrow 6 \ln 3=3 \ln (9) \Rightarrow c=0$

$$
y=3 \ln (x+25)
$$

(b)
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{x+25 "} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{0+25 "} \quad\left(=\frac{3}{25}\right)$
or
$\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{\left(\frac{6}{t+3}\right)}{2 t+6} \Rightarrow \frac{\frac{6}{2+3}}{2 \times 2+6} \quad\left(=\frac{6}{50}=\frac{3}{25}\right)$

$y-" 3 \ln 25 "=" \frac{3}{25} "(x\{-0\})$	dM1	3.1 a
$25 y-3 x=150 \ln 5$	A1	2.2 a
	$\mathbf{(4)}$	

Notes

Choose the mark scheme that best matches their chosen method.

Way 1

M1: Attempts to complete the square. Award for sight of $x=(t+3)^{2} \pm \ldots$ where $\ldots \neq 0$
M1: Rearranges their $x=(t+3)^{2}-25$ to either $(t+3)=\ldots$ or $(t+3)^{2}=\ldots$ and then substitutes correctly their expression into the parametric equation for y. So e.g., $t=\sqrt{x+25}-3 \rightarrow y=6 \ln (\sqrt{x+25}-3)$ is M0.
A1cso: $y=3 \ln (x+25)$ including brackets with all stages of working shown.
The " $y=$ " must appear at some point.

Way 2

M1: Attempts to use the power rule for logarithms $y=6 \ln (t+3)=\ldots \ln (t+3)^{2}$ where $\ldots \neq 6$
M1: Writes $y=6 \ln (t+3)$ as $3 \ln (t+3)^{2}$ and then multiplies out and substitutes correctly in for t to obtain a Cartesian equation for C
A1cso: $y=3 \ln (x+25)$ including brackets with all stages of working shown. The " $y=$ " must appear at some point.

Way 3

M1: Attempts to make t the subject for $y=6 \ln (t+3)$ to obtain $t=\mathrm{e}^{\frac{y}{6}} \pm \ldots$ where $\ldots \neq 0$
M1: Substitutes $t=\mathrm{e}^{\mathrm{f}(y)} \pm \ldots$ correctly into $x=t^{2}+6 t-16$ and rearranges to make y the subject.
A1cso: $y=3 \ln (x+25)$ including brackets with all stages of working shown.
The " $y=$ " must appear at some point.

Way 4

M1: Attempts to complete the square. Award for sight of $x=(t+3)^{2} \pm \ldots$ where $\ldots \neq 0$
M1: Attempts to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ where $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(\frac{\ldots}{t+3}\right)}{a t+b}, a, b \neq 0$ and uses the completed square form to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and then integrates to obtain a Cartesian equation for C

A1cso: A complete method using any correct point on the curve to show that $c=0$ and obtain $y=3 \ln (x+25)$ with all stages of working shown. The " $y=$ " must appear at some point.

Note that a common incorrect approach in (a) is:

$$
x=t^{2}+6 t-16=(t-2)(t+8) \Rightarrow x=t-2 \Rightarrow t=x+2 \Rightarrow y=6 \ln (x+5)
$$

which scores no marks.

(b)

B1ft: Deduces $y=3 \ln 25$ oe e.g $y=6 \ln 5$ but allow follow through on their Cartesian equation with $x=0$ and apply isw after a correct value or ft value for y
M1: Attempts to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=0$ so score for obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\ldots}{x+25 "}$ and substituting in $x=0$ Allow this mark if they use the letters A and B e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\ldots}{x+B}=\frac{\ldots}{0+B}$ or allow a "made up" A and B. or
Attempts to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $t=2$ by finding $\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{\left(\frac{6}{t+3}\right)}{2 t+6} \Rightarrow \frac{\frac{6}{5}}{2 \times 2+6} \quad\left(=\frac{6}{50}=\frac{3}{25}\right)$
For the derivative look for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(\frac{\ldots}{t+3}\right)}{a t+b}$ oe e.g. $\left(\frac{\ldots}{t+3}\right) \times \frac{1}{a t+b} a, b \neq 0$
 there is clear evidence that $t=2$ has not been used.
$\mathbf{d M 1}:$ Attempts to find the equation of the tangent. Score for sight of $y-" 3 \ln 25 "=" \frac{3}{25} "(x\{-0\})$ or if they use $y=m x+c$ they must proceed as far as $c=\ldots$ It is dependent on the previous method mark.
Must have numeric A and B now.
A1: $25 y-3 x=150 \ln 5$ or any integer multiple of this equation in the form $a x+b y=c \ln 5$

