Question	Scheme	Marks	AOs
9(a) Way 1	$x = (t+3)^2 - 25$	M1	1.1b
vvay 1	$\Rightarrow x + 25 = (t+3)^2 \Rightarrow (x+25)^{\frac{1}{2}} = (t+3) \Rightarrow y = \dots$	M1	2.1
	$y = 6\ln(x+25)^{\frac{1}{2}} \Rightarrow y = 3\ln(x+25)$	A1cso	1.1b
		(3)	
	(a) Way 2		
	$y = 6\ln(t+3) = 3\ln(t+3)^{2}$	M1	1.1b
	$y = 3\ln(t+3)^{2} = 3\ln(t^{2}+6t+9) = 3\ln(x+16+9)$	M1	2.1
	$y = 3\ln(x + 25)$	A1cso	1.1b
	(a) Way 3		
	$y = 6\ln(t+3) \Longrightarrow \frac{y}{6} = \ln(t+3) \Longrightarrow t+3 = e^{\frac{y}{6}} \Longrightarrow t = e^{\frac{y}{6}} - 3$	M1	1.1b
	$x = \left(e^{\frac{y}{6}} - 3\right)^2 + 6\left(e^{\frac{y}{6}} - 3\right) - 16 \Longrightarrow y = \dots$	M1	2.1
	$x = \left(e^{\frac{y}{6}} - 3 + 8\right) \left(e^{\frac{y}{6}} - 3 - 2\right) \Longrightarrow y = \dots$		
	$y = 3\ln(x + 25)$	A1cso	1.1b
	(a) Way 4		
	$x = (t+3)^2 - 25$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} \Longrightarrow \frac{3}{\left(t+3\right)^2} = \frac{3}{x+25} \Longrightarrow y = 3\ln\left(x+25\right)(+c)$	M1	2.1
	e.g. $t = 0 \Longrightarrow x = -16$, $y = 6 \ln 3 \Longrightarrow 6 \ln 3 = 3 \ln (9) \Longrightarrow c = 0$	A 1050	1 1b
	$y = 3\ln(x+25)$	AICSU	1.10
(b)	$x = 0, y = 3\ln 25$ oe e.g. $6\ln 5$	B1ft	2.2a
	$\frac{dy}{dx} = \frac{3}{x + 25} \Longrightarrow \frac{dy}{dx} = \frac{3}{0 + 25} \left(= \frac{3}{25} \right)$ or $\frac{dy}{dt} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} \Longrightarrow \frac{\frac{6}{2+3}}{2\times 2+6} \left(= \frac{6}{50} = \frac{3}{25} \right)$	M1	2.1
	$y - "3\ln 25" = "\frac{3}{25}"(x\{-0\})$	dM1	3.1a
	$25y - 3x = 150 \ln 5$	A1	2.2a
		(4)	
(7 marks)			
Notes Choose the work scheme that hast metabos their choser worthed			

Choose the mark scheme that best matches their chosen method.

(a)

Way 1

M1: Attempts to complete the square. Award for sight of $x = (t+3)^2 \pm ...$ where $... \neq 0$

M1: Rearranges their $x = (t+3)^2 - 25$ to either (t+3) = ... or $(t+3)^2 = ...$ and then substitutes correctly their expression into the parametric equation for y. So e.g., $t = \sqrt{x+25} - 3 \rightarrow y = 6 \ln(\sqrt{x+25} - 3)$ is M0.

A1cso: $y = 3\ln(x + 25)$ including brackets with all stages of working shown.

The "*y* =" must appear at some point.

Way 2

M1: Attempts to use the power rule for logarithms $y = 6\ln(t+3) = ... \ln(t+3)^2$ where $... \neq 6$

M1: Writes $y = 6\ln(t+3)$ as $3\ln(t+3)^2$ and then multiplies out and substitutes correctly in for *t* to obtain a Cartesian equation for *C*

A1cso: $y = 3\ln(x + 25)$ including brackets with all stages of working shown.

The "*y* =" must appear at some point.

Way 3

M1: Attempts to make *t* the subject for $y = 6\ln(t+3)$ to obtain $t = e^{\frac{y}{6}} \pm \dots$ where $\dots \neq 0$

M1: Substitutes $t = e^{f(y)} \pm ...$ correctly into $x = t^2 + 6t - 16$ and rearranges to make y the subject.

A1cso: $y = 3\ln(x + 25)$ including brackets with all stages of working shown.

The "*y* =" must appear at some point.

Way 4

M1: Attempts to complete the square. Award for sight of $x = (t+3)^2 \pm ...$ where $... \neq 0$

M1: Attempts to find $\frac{dy}{dx}$ where $\frac{dy}{dx} = \frac{\left(\frac{\cdots}{t+3}\right)}{at+b}$, $a, b \neq 0$ and uses the completed square form to find $\frac{dy}{dx}$ in terms of x and then integrates to obtain a Cartesian equation for C

A1cso: A complete method using any correct point on the curve to show that c = 0 and obtain $y = 3\ln(x+25)$ with all stages of working shown. The "y =" must appear at some point.

Note that a common incorrect approach in (a) is:

$$x = t^{2} + 6t - 16 = (t - 2)(t + 8) \Longrightarrow x = t - 2 \Longrightarrow t = x + 2 \Longrightarrow y = 6\ln(x + 5)$$

which scores no marks.

(b) B1ft: Deduces $y = 3 \ln 25$ or e.g. $y = 6 \ln 5$ but allow follow through on their Cartesian equation with x = 0and apply isw after a correct value or ft value for y M1: Attempts to find $\frac{dy}{dx}$ when x = 0 so score for obtaining $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$ and substituting in x = 0Allow this mark if they use the letters A and B e.g. $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$ or allow a "made up" A and B. or Attempts to find $\frac{dy}{dx}$ when t=2 by finding $\frac{\frac{dy}{dt}}{\frac{dt}{dx}} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} \Rightarrow \frac{\frac{6}{5}}{2\times 2+6} \left(=\frac{6}{50} = \frac{3}{25}\right)$ For the derivative look for $\frac{dy}{dx} = \frac{\left(\frac{\dots}{t+3}\right)}{at+b}$ oe e.g. $\left(\frac{\dots}{t+3}\right) \times \frac{1}{at+b} a, b \neq 0$ **NOTE** if candidates find $\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} = \frac{6(2t+6)}{t+3} = 12$ we will give BOD that t = 2 has been used unless there is clear evidence that t = 2 has not been used.

dM1: Attempts to find the equation of the tangent. Score for sight of $y - "3\ln 25" = "\frac{3}{25}"(x\{-0\})$ or if they use

y = mx + c they must proceed as far as c = ... It is dependent on the previous method mark. Must have numeric *A* and *B* now.

A1: $25y-3x=150\ln 5$ or any integer multiple of this equation in the form $ax+by=c\ln 5$