Question	Scheme	Marks	AOs
10(a)	e.g. $\frac{3kx-18}{(x+4)(x-2)} \equiv \frac{A}{x+4} + \frac{B}{x-2} \Longrightarrow 3kx-18 \equiv A(x-2) + B(x+4)$		
	or	B1	1.1b
	$\frac{3kx - 18}{(x+4)(x-2)} = \frac{A}{x-2} + \frac{B}{x+4} \Longrightarrow 3kx - 18 \equiv A(x+4) + B(x-2)$		
	$6k - 18 = 6B \Longrightarrow B = \dots$ or $-12k - 18 = -6A \Longrightarrow A = \dots$		
	or	M1	1.1b
	$3kx - 18 \equiv (A+B)x + 4B - 2A \Longrightarrow A + B = 3k, -18 = 4B - 2A$		
	$\Rightarrow A = \dots$ or $B = \dots$		
	$\frac{2k+3}{x+4} + \frac{k-3}{x-2}$	A1	1.1b
		(3)	
(b)	$\int \left(\frac{"2k+3"}{x+4} + \frac{"k-3"}{x-2}\right) dx = \dots \ln(x+4) + \dots \ln(x-2)$	M1	1.2
	$(2k+3)\ln(x+4) + (k-3)\ln(x-2)$	A1ft	1.1b
	$("2k+3")\ln(5) - ("k-3")\ln(5) \Longrightarrow ("k+6")\ln 5 = 21 \Longrightarrow k = \dots$	dM1	3.1a
	$(k=)\frac{21}{\ln 5}-6$	A1	2.2a
		(4)	
(7 marks)			
Notes			

(a)

B1: Correct form for the partial fractions and sets up the correct corresponding identity which may be implied by two equations in *A* and *B* if they are comparing coefficients.

M1: Either

- substitutes x = 2 or x = -4 in an attempt to find A or B in terms of k
- expands the rhs, collects terms and compares coefficients in an attempt to find A or B in terms of k

Or may be implied by one correct fraction (numerator **and** denominator)

You may see candidates substituting two other values of x and then solving simultaneous equations.

A1: Achieves $\frac{2k+3}{x+4} + \frac{k-3}{x-2}$ with no errors. Must be the correct partial fractions not just for correct numerators. May be seen in (b). Correct answer implies B1M1A1. One correct fraction only B0M1A0

(b)

M1: Attempts to find
$$\int \left(\frac{"2k+3"}{x+4} + \frac{"k-3"}{x-2}\right) dx$$
. Score for either $\frac{\dots}{x+4} \to \dots \ln(x+4)$ or $\frac{\dots}{x-2} \to \dots \ln(x-2)$

Allow the ... to be in terms of k or just constants but there must be no x terms.

Condone invisible brackets for this mark.

A1ft:
$$("2k+3")\ln|x+4| + ("k-3")\ln|x-2|$$

but condone round brackets e.g. $(2k+3)\ln(x+4) + (k-3)\ln(x-2)$ or equivalent e.g.

 $(2k+3)\ln(x+4) + (k-3)\ln(2-x)$

Follow through their partial fractions with numerators which must both be in terms of k.

Condone missing brackets as long as they are recovered later e.g. when applying limits.

dM1: A full attempt to find the value of *k*. To score this mark they must have attempted to integrate their partial fractions, substituted in the correct limits, subtracted either way round, set = 21 and attempted to solve to find *k*. Condone omission of the terms containing $\ln(1)$ or $\ln(-1)$. Note that e.g. $\ln(-5)$ or $\ln(5)$ must be seen but may be disregarded **after** substitution and subtraction. Do not be concerned with the processing as long as they proceed to $k = \dots$ Condone if they use *x* instead of *k* after limits have been used as long as the intention is clear.

A1: Deduces
$$(k =)\frac{21}{\ln 5} - 6$$
 or exact equivalent e.g. $\frac{21 - 6\ln 5}{\ln 5}, \frac{21 - 3\ln 25}{\ln 5}$

Allow recovery from expressions that contain e.g. ln(-5) as long as it is dealt with subsequently.

Also allow recovery from invisible brackets. Condone $x = \frac{21}{\ln 5} - 6$

Some candidates may use substitution in part (b) e.g.

$$\int \left(\frac{"2k+3"}{x+4} + \frac{"k-3"}{x-2}\right) dx = \int \left(\frac{"2k+3"}{x+4}\right) dx + \int \left(\frac{"k-3"}{x-2}\right) dx$$
$$u = x+4 \Rightarrow \int \left(\frac{"2k+3"}{x+4}\right) dx = \int \left(\frac{"2k+3"}{u}\right) du = \dots \ln u$$
$$u = x-2 \Rightarrow \int \left(\frac{"k-3"}{x-2}\right) dx = \int \left(\frac{"k-3"}{u}\right) du = \dots \ln u$$

Score M1 for integrating at least once to an appropriate form as in the main scheme e.g. ... $\ln u$ A1ft: For $(2k+3)\ln |u| + (k-3)\ln |u|$

but condone $("2k+3")\ln u + ("k-3")\ln u$ which may be seen separately

Follow through their "A" and "B" in terms of k.

Condone missing brackets as long as they are recovered later e.g. when applying limits.

dM1: A full attempt to find the value of *k*. To score this mark they must have attempted to integrate their partial fractions using substitution, substituted in the correct changed limits and subtracts either way

round, set = 21 and attempted to solve to find k. Do not be concerned with processing as long as they proceed to $k = \dots$ Condone omission of terms which contain e.g. $\ln(1)$ or $\ln(-1)$. Note that e.g. $\ln(-5)$ or $\ln(5)$ must be seen but may be disregarded **after** substitution and subtraction. $\left[(2k+3)\ln u \right]_{L}^{5} + \left[(k-3)\ln u \right]_{-5}^{-1} = 21 \Longrightarrow (2k+3)\ln 5 - (2k+3)\ln 1 + (k-3)\ln 1 - (k-3)\ln 5 = 21$ $\Rightarrow (2k+3)\ln 5 - (k-3)\ln 5 = 21 \Rightarrow (k+6)\ln 5 = 21 \Rightarrow k = \dots$ A1: $k = \frac{21}{\ln 5} - 6$ or exact equivalent e.g. $\frac{21 - 6\ln 5}{\ln 5}$, $\frac{21 - 3\ln 25}{\ln 5}$, $21\log_5 e - 6$. Allow recovery from expressions that contain e.g. $\ln(-5)$ as long as it is dealt with subsequently.

Also allow recovery from invisible brackets.