Question	Scheme	Marks	AOs
13(a)	$3^{-2}\left(1+\frac{x}{3}\right)^{-2}=3^{-2}\left(1+\ldots x+\ldots x^{2}\right)$	M1	1.1 b
	$(-2)\left(\frac{x}{3}\right)$ or $\frac{(-2)(-3)}{2!}\left(\frac{x}{3}\right)^{2}$	M1	1.1 b
	$\left(1+\frac{x}{3}\right)^{-2}=1+(-2)\left(\frac{x}{3}\right)+\frac{(-2)(-3)}{2!}\left(\frac{x}{3}\right)^{2}$	A1	1.1 b
	$3^{-2}\left(1+\frac{x}{3}\right)^{-2}=\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}$	A1	2.1

(a)

M1: Attempts a binomial expansion by taking out a factor of 3^{-2} or $\frac{1}{3^{2}}$ or $\frac{1}{9}$ and achieves at least the first 3 terms in their expansion. May be seen separately e.g. $\frac{1}{9}$ and $\left(1+\ldots x+\ldots x^{2}\right)$
M1: A correct method to find either the x or the x^{2} term unsimplified.
Award for $(-2)(k x)$ or $\frac{(-2)(-2-1)}{2!}(k x)^{2}$ where $k \neq 1$. Condone invisible brackets.
A1: For a correct unsimplified or simplified expansion of $\left(1+\frac{x}{3}\right)^{-2}$ e.g. $=1+(-2)\left(\frac{x}{3}\right)+\frac{(-2)(-3)}{2!}\left(\frac{x}{3}\right)^{2}-\ldots$ or $1-\frac{2 x}{3}+\frac{x^{2}}{3}-\ldots$ Do not condone missing brackets unless they are implied by subsequent work. Condone $\left(-\frac{x}{3}\right)^{2}$ for $\left(\frac{x}{3}\right)^{2}$
Also allow this mark for 2 correct simplified terms from $\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}$ with both method marks scored. A1: $\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}$ cao Allow terms to be listed. Ignore any extra terms. Isw once a correct simplified answer is seen.

Direct expansion, if seen, should be marked as follows:

$$
\left((3+x)^{-2}=3^{-2}-2 \times 3^{-3} \times x+\frac{-2(-2-1)}{2!} \times 3^{-4} \times x^{2}\right)
$$

M1: For $(3+x)^{-2}=3^{-2}+3^{-3} \times \alpha x+3^{-4} \times \beta x^{2}$
M1: A correct method to find either the x or the x^{2} term unsimplified.
Award for $(-2) \times 3^{-3} x$ or $\frac{(-2)(-2-1)}{2!} \times 3^{-4} x^{2}$. Condone invisible brackets.
A1: For a correct unsimplified or simplified expansion of $(3+x)^{-2}$ e.g. $3^{-2}-2 \times 3^{-3} \times x+\frac{-2(-2-1)}{2!} \times 3^{-4} \times x^{2}$
Also award for at least 2 correct simplified terms from $\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}$ with both method marks scored.
A1: $\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}$ cao Allow terms to be listed. Ignore any extra terms. Isw once a correct simplified answer is seen.

Note that M0M1A1A0 is a possible mark trait in either method

Some candidates are misreading $\int \frac{6 x}{(3+x)^{2}} \mathrm{~d} x$ in parts (b) and (c) as $\int \frac{6}{(3+x)^{2}} \mathrm{~d} x$ If parts (b) and (c) are consistently attempted with $\int \frac{6}{(3+x)^{2}} \mathrm{~d} x$ then we will allow the M marks in (b) only. M1 for $x^{n} \rightarrow x^{n+1}$ applied to their expansion in part (a) or $6 \times$ (their expansion in part (a)) and dM1 for substituting in 0.4 and 0.2 and subtracting either way round (may be implied).
No marks are available in part (c)

MARK PARTS (b) and (c) TOGETHER

(b)	$\int 6 x \times "\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right) " \mathrm{~d} x=\int\left(\frac{2 x}{3}-\frac{4 x^{2}}{9}+\frac{2 x^{3}}{9}\right) \mathrm{d} x=\ldots$	M1	1.1b
	$\int\left(\frac{2 x}{3}-\frac{4 x^{2}}{9}+\frac{2 x^{3}}{9}\right) \mathrm{d} x=\frac{x^{2}}{3}-\frac{4 x^{3}}{27}+\frac{x^{4}}{18}$ oe	A1	1.1b
	$\left[" \frac{x^{2}}{3}-\frac{4 x^{3}}{27}+\frac{x^{4}}{18} "\right]_{0.2}^{0.4}=\left(\frac{(0.4)^{2}}{3}-\frac{4(0.4)^{3}}{27}+\frac{(0.4)^{4}}{18}\right)-\left(\frac{(0.2)^{2}}{3}-\frac{4(0.2)^{3}}{27}+\frac{(0.2)^{4}}{18}\right)$	dM1	3.1a
	$=$ awrt 0.03304 or $\frac{223}{6750}$	A1	1.1b
		(4)	

(b)

M1: Attempts to multiply their expansion from part (a) by $6 x$ or just x and attempts to integrate. Condone copying slips and slips in expanding. Look for $x^{n} \rightarrow x^{n+1}$ at least once having multiplied by $6 x$ or x. Ignore e.g. spurious integral signs.
A1: Correct integration, simplified or unsimplified.

$$
\frac{x^{2}}{3}-\frac{4 x^{3}}{27}+\frac{x^{4}}{18} \text { oe e.g. } \frac{1}{9}\left(3 x^{2}-\frac{4 x^{3}}{3}+\frac{x^{4}}{2}\right), 6\left(\frac{x^{2}}{18}-\frac{2 x^{3}}{81}+\frac{x^{4}}{108}\right)
$$

If they have extra terms they can be ignored.
Ignore e.g. spurious integral signs.
dM1: An overall problem-solving mark for

- using part (a) by integrating $6 x \times$ their binomial expansion and
- substituting in 0.4 and 0.2 and subtracting either way round (may be implied)

For evidence of using the correct limits we do not expect examiners to check so allow this mark if they obtain a value with (minimal) evidence of the use of the limits 0.4 and 0.2.
This could be e.g. $[\mathrm{f}(x)]_{0.2}^{0.4}=\ldots$ provided the first M was scored. If the integration was correct, evidence can be taken from answer of awrt 0.0330 if limits are not seen elsewhere. Depends on the first M mark.
A1: awrt 0.03304 (NB allow the exact value which is $\frac{223}{6750}=0.033037037 \ldots$...).
Isw following a correct answer.
Note answers which use additional terms in the expansion to give a different approximation score A0 Also note that the actual value is $0.032865 \ldots$

Some may use integration by parts in (b) and the following scheme should be applied.

 Integration by parts in (b):$$
\begin{gathered}
\text { Either by taking } u=6 x \text { and } \frac{\mathrm{d} v}{\mathrm{~d} x}="\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right) " \\
\begin{array}{c}
\int 6 x \times "\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right) " \mathrm{~d} x=6 x \times\left(\frac{1}{9} x-\frac{x^{2}}{27}+\frac{x^{3}}{81}\right)-6\left(\left(\frac{1}{9} x-\frac{x^{2}}{27}+\frac{x^{3}}{81}\right) \mathrm{d} x\right. \\
=6 x\left(\frac{1}{9} x-\frac{x^{2}}{27}+\frac{x^{3}}{81}\right)-\left(\frac{1}{3} x^{2}-\frac{2 x^{3}}{27}+\frac{6 x^{4}}{324}\right)
\end{array}
\end{gathered}
$$

M1: A full attempt at integration by parts. This requires:

$$
\int 6 x \times "\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right) " \mathrm{~d} x=k x \times \mathrm{f}(x)-k \int \mathrm{f}(x) \mathrm{d} x=k x \times \mathrm{f}(x)-k \mathrm{~g}(x)
$$

Where $\mathrm{f}(x)$ is an attempt to integrate their expansion from (a) with $x^{n} \rightarrow x^{n+1}$ at least once and $\mathrm{g}(x)$ is an attempt to integrate their $\mathrm{f}(x)$ with $x^{n} \rightarrow x^{n+1}$ at least once A1: Fully correct integration. Then dM1A1 as in the main scheme

$$
\begin{gathered}
\text { Or by taking } u="\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right) " \text { and } \frac{\mathrm{d} v}{\mathrm{~d} x}=6 x \\
\int 6 x \times "\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right) " \mathrm{~d} x=3 x^{2} \times\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right)-\int 3 x^{2} \times\left(-\frac{2}{27}+\frac{2 x}{27}\right) \mathrm{d} x \\
=3 x^{2} \times\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right)-\int\left(\frac{6 x^{3}}{27}-\frac{6 x^{2}}{27}\right) \mathrm{d} x=3 x^{2} \times\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right)-\left(\frac{6 x^{4}}{108}-\frac{6 x^{3}}{81}\right)
\end{gathered}
$$

M1: A full attempt at integration by parts. This requires:
$\int 6 x \times "\left(\frac{1}{9}-\frac{2 x}{27}+\frac{x^{2}}{27}\right) " \mathrm{~d} x=k x^{2} \times \mathrm{f}(x)-k \int x^{2} \mathrm{~g}(x) \mathrm{d} x=k x^{2} \times \mathrm{f}(x)-k \mathrm{~h}(x)$
Where $\mathrm{f}(x)$ is their expansion from (a) and $\mathrm{g}(x)$ is an attempt to differentiate their $\mathrm{f}(x)$ with $x^{n} \rightarrow x^{n-1}$ at least once and $\mathrm{h}(x)$ is an attempt to integrate their $x^{2} \mathrm{~g}(x)$ with $x^{n} \rightarrow x^{n+1}$ at least once
A1: Fully correct integration. Then dM1A1 as in the main scheme

$$
u=3+x \Rightarrow \int_{3.2}^{3.4} \mathrm{f}(u) \mathrm{d} u \Rightarrow \int_{3.2}^{3.4} \frac{6(u-3)}{u^{2}} \mathrm{~d} u=\int_{3.2}^{3.4} \frac{6}{u}-\frac{18}{u^{2}} \mathrm{~d} u \Rightarrow \ldots \ln u+\ldots u^{-1}
$$

$$
\int_{3.2}^{3.4} \frac{6(u-3)}{u^{2}} \mathrm{~d} u=\int_{3.2}^{3.4} \frac{6}{u}-\frac{18}{u^{2}} \mathrm{~d} u \Rightarrow 6 \ln u+18 u^{-1}
$$

$$
\left[6 \ln u+18 u^{-1}\right]_{3.2}^{3.4}=\left(6 \ln 3.4+\frac{18}{3.4}\right)-\left(6 \ln 3.2+\frac{18}{3.2}\right)=\ldots
$$

$$
6 \ln \left(\frac{17}{16}\right)-\frac{45}{136} \text { oe }
$$

(c)

Alt 1

Overall problem-solving mark (see notes)	M1	3.1a
$\int 6 x(3+x)^{-2} \mathrm{~d} x=\frac{\ldots x}{3+x} \pm \ldots \int(3+x)^{-1} \mathrm{~d} x=\frac{\ldots x}{3+x} \pm \ldots \ln (3+x)$ oe	M1	1.1 b
$=6 \ln (3+x)-\frac{6 x}{3+x}$ oe	A1	1.1 b
$\left(6 \ln (3+0.4)-\frac{6(0.4)}{3+0.4}\right)-\left(6 \ln (3+0.2)-\frac{6(0.2)}{3+0.2}\right)=\ldots$	ddM1	1.1 b
$6 \ln \left(\frac{17}{16}\right)-\frac{45}{136}$ oe	A1	2.1

(c) Alt 2

Overall problem-solving mark (see notes)	M1	3.1 a
$\int 6 x(3+x)^{-2} \mathrm{~d} x=\int\left(\frac{\ldots}{(3+x)}+\frac{\ldots}{(3+x)^{2}}\right) \mathrm{d} x=\ldots \ln (3+x)+\frac{\ldots}{3+x}$	oe	M1
$=6 \ln (3+x)+\frac{18}{3+x}$ oe	A1	1.1 b
$\left(6 \ln (3+0.4)+\frac{18}{3+0.4}\right)-\left(6 \ln (3+0.2)+\frac{18}{3+0.2}\right)=\ldots$	ddM1	1.1 b
$6 \ln \left(\frac{17}{16}\right)-\frac{45}{136}$ oe	A1	2.1

(13 marks)

Notes

(c) There are various methods which can be used

M1: An overall problem-solving mark for all of

- using an appropriate integration technique e.g. substitution, by parts or partial fractions - note that this may not be correct but mark positively if they have tried one of these approaches
- integrates one of their terms to a natural logarithm, e.g., $\frac{a}{3+x} \rightarrow b \ln (3+x)$ or $\frac{a}{u} \rightarrow b \ln u$
- substitutes in correct limits and subtracts either way round

M1: Integrates to achieve an expression of the required form for their chosen method

- substitution: $u=x+3 \rightarrow \pm \frac{a}{u} \pm b \ln u$ or e.g. $u=(x+3)^{2} \rightarrow \pm \frac{a}{\sqrt{u}} \pm b \ln u$
- parts: $\pm a \ln (3+x) \pm \frac{b x}{3+x} \quad$ condone missing brackets e.g. ... $\ln x+3$ for $\ldots \ln (3+x)$
- partial fractions: $\pm a \ln (3+x) \pm \frac{b}{3+x} \quad$ condone missing brackets e.g. ... $\ln 3+x$ for $\ldots \ln (3+x)$

A1: Correct integration for their method e.g.

- substitution: $u=x+3 \rightarrow 6 \ln u+18 u^{-1}$ or e.g. $u=(x+3)^{2} \rightarrow 3 \ln u+\frac{18}{\sqrt{u}}$
- parts: $6 \ln (3+x)-\frac{6 x}{3+x}$
- partial fractions: $6 \ln (3+x)+\frac{18}{3+x}$ oe e.g. $3 \ln \left(9+6 x+x^{2}\right)+\frac{18}{3+x}$

Note that the above terms may appear "separated" but must be correct with the correct signs. (ignore any reference to a constant of integration)
Do not condone missing brackets e.g. $6 \ln x+3$ for $6 \ln (3+x)$ unless they are implied by later work. ddM1: Substitutes in the correct limits for their integral and subtracts either way round to find a value Depends on both previous method marks.
For evidence of using the correct limits we do not expect examiners to check so allow this mark if they obtain a value with (minimal) evidence of the use of the appropriate limits.
This could be e.g. $[\mathrm{f}(x)]_{0.2}^{0.4}=\ldots$ provided both previous M marks were scored.
Note that for substitution they may revert back to $3+x$ and so should be using 0.4 and 0.2
A1: A full and rigorous argument leading to $6 \ln \left(\frac{17}{16}\right)-\frac{45}{136}$ or exact equivalent e.g. $3 \ln \left(\frac{289}{256}\right)-\frac{45}{136}$ or e.g. $-6 \ln \left(\frac{16}{17}\right)-\frac{45}{136}$

The brackets are not required around the $\frac{17}{16}$ and allow exact equivalents e.g. allow 1.0625 or $1 \frac{1}{16}$ but not e.g. $\frac{3.4}{3.2}$. The $\frac{45}{136}$ must be exact or an exact equivalent. Also allow e.g. $6 \ln \left|\frac{17}{16}\right|-\frac{45}{136}$ Ignore spurious integral signs that may appear as part of their solution.

