Question	Scheme	Marks	AOs
14(a)	e.g. $2\frac{\sin\theta}{\cos\theta}(8\cos\theta + 23(\underline{1-\cos^2\theta})) = 8 \times \underline{2\sin\theta\cos\theta}\sec^2\theta$	B1	1.2
	$2\tan\theta(8\cos\theta+23\sin^2\theta)=8\sin2\theta\sec^2\theta$		
	$\Rightarrow 2\sin\theta\cos\theta(8\cos\theta + 23(1-\cos^2\theta)) = 8\sin 2\theta$		2.1
	$\sin 2\theta (8\cos\theta + 23(1-\cos^2\theta)) = 8\sin 2\theta$		2.2a
	$\sin 2\theta (23\cos^2\theta - 8\cos\theta - 15) = 0$	M1A1	
		(3)	
(b)	$\sin 2x(23\cos^2 x - 8\cos x - 15) = 0$		
	$\sin 2x = 0 \Longrightarrow x = 360^\circ \text{ or } 540^\circ$	B1	2.2a
	$23\cos^2 x - 8\cos x - 15 \Longrightarrow \cos x = -\frac{15}{23}$	M1	1.1b
	$\cos x = -\frac{15}{23} \Longrightarrow x = \dots$	dM1	1.1b
	$x = 360^\circ$, 540° and awrt 491° only	A1	2.3
		(4)	
			(7 marks)

Notes

(a) Allow use of e.g. x but the final mark requires the equation to be in terms of θ B1(M1 on EPEN): For recalling and using at least one correct trigonometric identity in the given equation.

e.g. one of: $\sin^2 \theta + \cos^2 \theta = 1$, $1 + \tan^2 \theta = \sec^2 \theta$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sin 2\theta = 2\sin \theta \cos \theta$

This may be seen explicitly or may be implied by their working by e.g. $\tan \theta \cos \theta = \sin \theta$ or they might multiply both sides by $\cos^2 \theta$ leaving $8\sin 2\theta$ on the rhs implying $1 + \tan^2 \theta = \sec^2 \theta$

M1: For manipulating the equation using trigonometric identities (condoning sign slips only in the identities and arithmetic slips) to obtain an expression of the form:

 $A\sin 2\theta\cos^2\theta + B\sin 2\theta\cos\theta + C\sin 2\theta$ (=0) or $\sin 2\theta (A\cos^2\theta + B\cos\theta + C)$ (=0) with $A, B, C \neq 0$

A1: $\sin 2\theta (23\cos^2\theta - 8\cos\theta - 15) = 0$ or e.g. $\sin 2\theta (-23\cos^2\theta + 8\cos\theta + 15) = 0$ cao

Note that this is not a given answer so condone notational slips e.g. $\cos \theta^2$ for $\cos^2 \theta$ provided the intention is clear but the final equation must have no notational errors.

Note that the "= 0" is not required for the M1 but is required for the A1

Note: some candidates arrive at the correct final answer fortuitously following errors in their work.

- (b) Allow all marks in (b) to score if the correct equation is obtained fortuitously in part (a) Also allow use of θ instead of x throughout in part (b). Correct answers, no working scores max 1000
- Also allow use of θ instead of x throughout in part (b). Correct answers, no working scores max 1000 B1: For one of $x = 360(^{\circ})$ or $x = 540(^{\circ})$ Condone $x = 2\pi$ or $x = 3\pi$ for this mark.

The degrees symbol is not required. This may come from $\cos x = 1$

M1: Attempts to solve their 3TQ from part (a) or a "made up" 3TQ (which may only be seen in (b)) leading to a value for $\cos x$. The general guidance for solving a 3 term quadratic equation can be applied. Allow solution(s) from a calculator which may be implied by at least one correct value for their 3TQ. Must be a value for $\cos x$ and not e.g. *x*.

dM1: Attempts to find one of their angles in the range 360 < x < 540 (but not 450) for their $\cos x = k$ where |k| < 1 May be implied by their value(s) but must be in degrees.

Requires them to state a value for cosx. Must be checked (you can check cos(their x) = their k (1sf)) A1: $x = 360^{\circ}$, 540° and awrt 491° only with no other values in range (including 450).

The degrees symbol is not required. awrt 491 must come from $\cos x = -\frac{15}{23}$