Question	Scheme	Marks	AOs
14(a)	$\text { e.g. } 2 \frac{\sin \theta}{\underline{\cos \theta}}\left(8 \cos \theta+23\left(\underline{1-\cos ^{2} \theta}\right)\right)=8 \times \underline{2 \sin \theta \cos \theta} \underline{\sec ^{2} \theta}$	B1	1.2
	$\begin{gathered} 2 \tan \theta\left(8 \cos \theta+23 \sin ^{2} \theta\right)=8 \sin 2 \theta \sec ^{2} \theta \\ \Rightarrow 2 \sin \theta \cos \theta\left(8 \cos \theta+23\left(1-\cos ^{2} \theta\right)\right)=8 \sin 2 \theta \\ \sin 2 \theta\left(8 \cos \theta+23\left(1-\cos ^{2} \theta\right)\right)=8 \sin 2 \theta \\ \sin 2 \theta\left(23 \cos ^{2} \theta-8 \cos \theta-15\right)=0 \end{gathered}$	M1A1	$\begin{gathered} 2.1 \\ 2.2 \mathrm{a} \end{gathered}$
		(3)	
(b)	$\sin 2 x\left(23 \cos ^{2} x-8 \cos x-15\right)=0$		
	$\sin 2 x=0 \Rightarrow x=360^{\circ}$ or 540°	B1	2.2a
	$23 \cos ^{2} x-8 \cos x-15 \Rightarrow \cos x=-\frac{15}{23}$	M1	1.1b
	$\cos x=-\frac{15}{23} \Rightarrow x=\ldots$	dM1	1.1b
	$x=360^{\circ}, 540^{\circ}$ and awrt 491° only	A1	2.3
		(4)	
(7 marks)			

Notes

(a) Allow use of e.g. \boldsymbol{x} but the final mark requires the equation to be in terms of $\boldsymbol{\theta}$

B1(M1 on EPEN): For recalling and using at least one correct trigonometric identity in the given equation.
e.g. one of: $\sin ^{2} \theta+\cos ^{2} \theta=1,1+\tan ^{2} \theta=\sec ^{2} \theta, \tan \theta=\frac{\sin \theta}{\cos \theta}, \sin 2 \theta=2 \sin \theta \cos \theta$

This may be seen explicitly or may be implied by their working by e.g. $\tan \theta \cos \theta=\sin \theta$ or they might multiply both sides by $\cos ^{2} \theta$ leaving $8 \sin 2 \theta$ on the rhs implying $1+\tan ^{2} \theta=\sec ^{2} \theta$
M1: For manipulating the equation using trigonometric identities (condoning sign slips only in the identities and arithmetic slips) to obtain an expression of the form:
$A \sin 2 \theta \cos ^{2} \theta+B \sin 2 \theta \cos \theta+C \sin 2 \theta(=0) \quad$ or $\sin 2 \theta\left(A \cos ^{2} \theta+B \cos \theta+C\right)(=0)$ with $A, B, C \neq 0$ A1: $\sin 2 \theta\left(23 \cos ^{2} \theta-8 \cos \theta-15\right)=0$ oe e.g. $\sin 2 \theta\left(-23 \cos ^{2} \theta+8 \cos \theta+15\right)=0$ сао
Note that this is not a given answer so condone notational slips e.g. $\cos \theta^{2}$ for $\cos ^{2} \theta$ provided the intention is clear but the final equation must have no notational errors.
Note that the " $=0$ " is not required for the M1 but is required for the A1
Note: some candidates arrive at the correct final answer fortuitously following errors in their work.
(b) Allow all marks in (b) to score if the correct equation is obtained fortuitously in part (a) Also allow use of $\boldsymbol{\theta}$ instead of \boldsymbol{x} throughout in part (b). Correct answers, no working scores max 1000
B1: For one of $x=360\left(^{\circ}\right)$ or $x=540\left({ }^{\circ}\right)$ Condone $x=2 \pi$ or $x=3 \pi$ for this mark.
The degrees symbol is not required. This may come from $\cos x=1$
M1: Attempts to solve their 3TQ from part (a) or a "made up" 3TQ (which may only be seen in (b)) leading to a value for $\cos x$. The general guidance for solving a 3 term quadratic equation can be applied.
Allow solution(s) from a calculator which may be implied by at least one correct value for their 3TQ.
Must be a value for $\cos x$ and not e.g. x.
dM1: Attempts to find one of their angles in the range $360<x<540$ (but not 450) for their $\cos x=k$ where $|k|<1 \quad$ May be implied by their value(s) but must be in degrees.
Requires them to state a value for $\cos x$. Must be checked (you can check $\cos ($ their $x)=$ their $k(1 \mathrm{sf})$) A1: $x=360^{\circ}, 540^{\circ}$ and awrt 491° only with no other values in range (including 450).

The degrees symbol is not required. awrt 491 must come from $\cos x=-\frac{15}{23}$

