Question	Scheme	Marks	AOs
15	$\left(\sin x - \cos x\right)^2 < 1 \Longrightarrow \sin^2 x - 2\sin x \cos x + \cos^2 x (<11) \text{ o.e.}$	M1	1.1b
	Examples: $1-2\sin x \cos x < 11, \ 1-\sin 2x < 1, \ -2\sin x \cos x < 0, \ -\sin 2x < 0$	A1	2.2a
	As x is obtuse then $-2\sin x \cos x$ is positive because $\sin x > 0$ and $\cos x < 0$ so we have a contradiction. Therefore $\sin x - \cos x = 1$ *	A1*	2.4
	Therefore $\sin x = \cos x \dots 1^{-1}$	(3	marks)
Notes			
Condone poor notation e.g. $\sin x^2$ or e.g. $-2\sin\theta\cos x < 11$ for the first two marks only.			
M1: Expands $(\sin x - \cos x)^2$ to obtain $\sin^2 x \pm k \sin x \cos x + \cos^2 x$ where $k = 1$ or 2 o.e. May be implied.			
A1: Uses a correct identity $\sin^2 x + \cos^2 x = 1$ or e.g. $-\sin^2 x - \cos^2 x = -1$ to obtain a correct inequality in any form that does not include the $\sin^2 x$ and $\cos^2 x$ terms. Condone e.g. $-2\sin \cos x < 0$ A1*: Fully correct work which includes • a convincing argument that explains why their inequality is not true • a statement that indicates there is a contradiction • a conclusion that $\sin x - \cos x \dots 1$ (there is no need to repeat "when x is obtuse") • no contradictory statements • no mixed/missed variables, e.g., $-2\sin\theta\cos x < 11$ or $1 - \sin 2 < 1$ Examples: In the second quadrant $-2\sin x \cos x \sin -x + x - = +$ "(this is a) contradiction" or equivalent (therefore) $\frac{\sin x - \cos x \dots 1}{\sin x - \cos x \dots 1}$ or As x is obtuse, $\sin x > 0$, $\cos x < 0$ so $-2\sin x \cos x > 0$			
"(this is a) contradiction" or equivalent (therefore) $\sin x - \cos x \dots 1$			
From $-\sin 2x < 0$: As x is obtuse, 2x is reflex o.e. (i.e. $\pi < 2x < 2\pi$) so $-\sin 2x > 0$ "(this is) wrong" or equivalent (therefore) $\underline{\sin x - \cos x \dots 1}$			
From $1 - \sin 2x < 1$:			
As x is obtuse, 2x is reflex o.e. (i.e. $180 < 2x < 360$) so $\sin 2x < 0$ so $1 - \sin 2x > 1$ "(this is a) contradiction" or equivalent (therefore) $\frac{\sin x - \cos x \dots 1}{2}$			
From $\sin 2x > 0$:			
As x is obtuse, $2x$ is reflex o.e. (i.e. $180 < 2x < 360$) so $\sin 2x < 0$			

"(this is) incorrect" or equivalent (therefore) $\sin x - \cos x \dots 1$

Note that you may condone the absence of a statement referring to the fact that $(\sin x - \cos x)^2 < 1$ is only valid since $\sin x - \cos x > 0$ when *x* is obtuse.