Question	Scheme	Marks	AOs
6(i)	There could be an even number of roots between 4 and 5.	B1	2.3
		(1)	
(ii)(a)	$g'(x) = 5x - e^x$	M1	1.1b
		A1	1.1b
		(2)	
(ii)(b)	Attempts $x_1 = 4 - \frac{2.5 \times 4^2 - e^4 + 4}{"5 \times 4 - e^4"}$ (NB g(4)=-10.5 and g'(4)=-34.5)	M1	1.1b
	$x_1 = $ awrt 3.69	A1	1.1b
		(2)	
(ii)(c)	The second approximation is further away from α	B1	2.4
		(1)	
(6 marks)			narks)
Notes:			
(i) B1: Explains that there could be e.g. two roots between 4 and 5. It must be an even number of roots that the candidate suggests. Alternatively, explains that the curve might not be continuous (in the interval). (ii)(a) M1: Attempts to differentiate. Look for $x^2 \rightarrowx$ or $e^x \rightarrowe^x$ A1: $g'(x) = 5x - e^x$			

(ii)(b)

M1: Attempts $x_1 = 4 - \frac{g(4)}{g'(4)}$ to obtain a value following through on their g'(x) as long as it is a

"changed" function.

Must be a correct N-R formula used - may need to check their values.

There must be clear evidence that $4 - \frac{g(4)}{g'(4)}$ is being attempted.

A1: $x_1 = awrt 3.69$

(ii)(c)

B1: First iteration shown starting at x = 2 with

- a tangent to the curve at the point of intersection
- the tangent has a positive gradient meeting the *x*-axis to the left of 2
- minimal conclusion that the second approximation is further away from α